
© AVITRACK Consortium – AVITRACK Restricted 1/45

AVITRACK

Contract n° AST3-CT-2003-502818

‘
Internal Technical Note

Tracking Report

Version 1.0 – Draft 2

IN_AVI_2_011

Internal Technical note
Tracking Report

Vers : 1.0 - Draft 2

Ref : IN_AVI_2_011

Date : 30-Nov-2004

Contract : AST3-CT-2003-502818

© AVITRACK Consortium – AVITRACK Restricted 2/45

Contract Number :

Document Title :

Document version :

Document status :

Date :

Availability :

Authors :

AST3-CT-2003-502818

Tracking Report

1.0

Draft 2

30-Nov-2004

Restricted

Mark Borg, David Thirde, Miguel Pinzolas

Abstract This document describes the initial work performed by the University of Reading in

object tracking for the AVITRACK project.

Keyword List

Tracking, Frame to Frame Tracking, Local Feature Tracker, Colour Tracker, Cluster

Tracker.

Internal Technical note
Tracking Report

Vers : 1.0 - Draft 2

Ref : IN_AVI_2_011

Date : 30-Nov-2004

Contract : AST3-CT-2003-502818

© AVITRACK Consortium – AVITRACK Restricted 3/45

DOCUMENT CHANGE LOG

Document Issue. Date Reasons for change

1.0 – Draft 1 23-Nov-2004 Initial release.
1.0 – Draft 2 30-Nov-2004 Minor changes.

APPLICABLE AND REFERENCE DOCUMENTS (A/R)

A/R Reference Title

Please Refer to the Reference Section at the end of this document.

Internal Technical note
Tracking Report

Vers : 1.0 - Draft 2

Ref : IN_AVI_2_011

Date : 30-Nov-2004

Contract : AST3-CT-2003-502818

© AVITRACK Consortium – AVITRACK Restricted 4/45

Table of contents

1. INTRODUCTION .. 5

2. SYSTEM OVERVIEW... 5

3. TRACKING – AN OVERVIEW ... 5

4. THE TRACKING ALGORITHMS ... 6

5. LOCAL FEATURE TRACKER... 7
5.1. The KLT Algorithm... 7
5.2. From Features to Objects.. 9
5.3. The Object Tracking Algorithm.. 9

5.3.1. Generate Object Predictions ... 10
5.3.2. Run the KLT Algorithm.. 10
5.3.3. Match Predictions to Measurements... 10
5.3.4. Handle New and Lost Objects... 16
5.3.5. Update Object State.. 16

5.4. Experimental Results... 16
5.5. Conclusions ... 17

6. COLOUR TRACKER.. 18
6.1. The Object Colour Model... 18
6.2. The Bhattacharyya Coefficient .. 18
6.3. The CamShift Algorithm .. 19
6.4. The Object Tracking Algorithm.. 21

6.4.1. Generate Object Predictions ... 21
6.4.2. Build Colour Models .. 22
6.4.3. Match Predictions to Measurements... 22
6.4.4. Handle New and Lost Objects... 24

6.5. Experimental Results... 24
6.6. Conclusions ... 24

7. CLUSTER TRACKER .. 25
7.1. Description of the Original Algorithm... 25
7.2. The Cluster Tracking Algorithm... 27
7.3. The New Implementation... 29
7.4. Experimental Results... 30
7.5. Conclusions ... 30

8. CONFIGURATION PARAMETERS ... 31

9. PERFORMANCE.. 32

10. SOME RESULTS ... 33
10.1. Results – Local Feature Tracker ... 33
10.2. Results – Colour Tracker... 37
10.3. Results – Cluster Tracker .. 37

11. CONCLUSION.. 44

12. FUTURE WORK... 44

REFERENCES ... 45

Internal Technical note
Tracking Report

Vers : 1.0 - Draft 2

Ref : IN_AVI_2_011

Date : 30-Nov-2004

Contract : AST3-CT-2003-502818

© AVITRACK Consortium – AVITRACK Restricted 5/45

1. INTRODUCTION

This document presents the initial work performed by the University of Reading in developing Tracking
Algorithms as part of “Work Package 3 - Scene Tracking” of the AVITRACK project [1]. An initial evaluation
of the algorithms using AVITRACK test sequences acquired at Toulouse airport is also presented. The
work on WP3 is still ongoing.

2. SYSTEM OVERVIEW

The tracking algorithms presented in this document form part of the “Frame-to-Frame Tracking” module,
which is responsible for performing motion detection (see Motion Detection Report [4]) and short-term
tracking. This module is used to process video streams from 8 cameras independently. The tracking
results of each camera are then sent in XML via CORBA communications to the “Data Fusion” module,
which in turn combines the tracking results from all the 8 cameras into one output for behaviour analysis.

Two of the tracking algorithms have already been integrated into the first delivery of the Frame-to-Frame
Tracking module, called AvitrackFrameTracker (v0.3) [14], while the third is in the process of being
integrated. Having all the tracking algorithms integrated into one application makes it possible to evaluate
the algorithms on an equal footing, as well as having the ability to test the algorithms as part of the whole
system – together with motion detection, data fusion, etc.

The tracking algorithms were mostly tested with the following AVITRACK data sequences: S3-A320-
CAM2, S3-A320-CAM3, and S3-A320-CAM8, some results of which are presented in this document. A
more formal evaluation, using ground-truth information and pre-defined evaluation criteria, will be done in
the near future, as part of “Work Package 6.1 – Scene Tracking Evaluation”.

3. TRACKING – AN OVERVIEW

Real-time object tracking can be described as a correspondence problem, and involves finding which
object in an image frame corresponds to which object in the next frame of a video stream – hence, the
name: frame to frame tracking. Normally, the time interval between two successive frames is very small,
meaning that the changes visible from one frame to the other should be limited. This allows the use of
some form of temporal constraints and/or object features that can help to simplify the correspondence
problem.

Several factors can make life very difficult for tracking algorithms, such as motion detection errors, and the
interactions between the objects as viewed by a camera. Objects can appear to merge together, occlude
each other, fragment, undergo rigid or non-rigid motion, etc. The tracking algorithms should be as robust
as possible to these events.

There are basically two approaches to solving the tracking problem: (1) top-down or model-based tracking,
and (2) bottom-up or low-level tracking. The first approach uses knowledge of what objects will appear in
the scene, and given a 3D model of the object, hypothesis are generated and tested against the image for
the presence of that object. The second approach starts with the image segmented into a number of
regions and uses only low-level information available in the image to identify and track objects.

Internal Technical note
Tracking Report

Vers : 1.0 - Draft 2

Ref : IN_AVI_2_011

Date : 30-Nov-2004

Contract : AST3-CT-2003-502818

© AVITRACK Consortium – AVITRACK Restricted 6/45

Several different tracking methods have been used in computer vision, amongst these one can find: blob
tracking, model-based tracking, template matching methods, methods using optical flow, feature tracking,
Kalman filter trackers, particle filters, active contour based methods, colour tracking etc. [15,16].

4. THE TRACKING ALGORITHMS

For the AVITRACK work done so far, it was decided to use a bottom-up approach for tracking, as these
algorithms are normally more generic and require little context about the scene. Also, model-based
methods are normally slow and do not run in real-time.

The following is the list of tracking algorithms that have so far been implemented and tested by the
University of Reading team:

x Local Feature Tracker
x Colour Tracker
x Cluster Tracker

Each of these tracking algorithms is described in more detail in the following sections.

Internal Technical note
Tracking Report

Vers : 1.0 - Draft 2

Ref : IN_AVI_2_011

Date : 30-Nov-2004

Contract : AST3-CT-2003-502818

© AVITRACK Consortium – AVITRACK Restricted 7/45

5. LOCAL FEATURE TRACKER

This algorithm tracks an object by selecting a set of sparse local features for that object and tracks the
features from one frame to the next. It is based on the KLT (Kanade, Lucas, Tomasi) tracking algorithm,
which is described in [2,3].

5.1. THE KLT ALGORITHM

A local feature is represented by a small window, which is assumed to undergo an affine motion
displacement G from one frame to the next, composed of a translational motion d and a window
deformation D. The size of the window is specified by parameter WINDOW_SIZE and defaulted to 5x5 pixels in
this implementation of the algorithm.

T

yyyx

xyxx
yx

dy

dx

dd

dd
DD),(,,where »¼

º«¬
ª »¼

º«¬
ª � xddxG (5.1)

Tracking of a feature then consists of determining the 6 parameters of the above equation by performing a
search in the next frame and measuring the similarity in appearance of the feature between the current
frame (It) and the next one (It+1).

For the search and tracking part, only the translational motion vector d is used, as this is normally more
reliable. But for measuring the similarity between two feature windows, the full affine motion model is used
– both d and matrix D. The dissimilarity measure uses the r.m.s. residue and is given by:

� � � �> @ matrix)identity(1,1where)(2
1 � �� ³ ³ � DAdwIAI

W tt xxxdxH (5.2)

A Newton-Raphson method is used to minimise the dissimilarity measure. For this implementation, the
weighting function w(x) is simply set to 1, to obtain the same weight across the whole window, for
computational efficiency.

The KLT method is normally suited for tracking small displacements of features between two consecutive
frames. To allow for even larger displacements between frames, a multi-resolution approach is used, with
a 2-level image pyramid selected for this implementation. Tracking is first performed on a version of the
image sub-sampled by a factor of 8 (image size of 90x72), and then this coarse result is used to do the
tracking on the full image (760x576).

For selecting good features to track, the KLT algorithm finds windows that contain a strong intensity
variation in both horizontal and vertical directions, such as textured regions, corners, etc., and which can
normally be reliably tracked. The algorithm computes the 2x2 gradient matrix Z at each candidate 5x5
window W within the object being tracked. Only pixels which are labelled as ‘foreground’ by the motion
detector are considered. The gradient operator used is the derivative of a Gaussian G’ with V set to 1.0,
and is convolved with the image to get the horizontal gradient gx and vertical gradient gy.

»»¼
º

««¬
ª ¦¦ ¦¦

2

2

yxy

yxx
W ggg

ggg
Z (5.3)

¸̧¹
·¨̈©

§
� �

22
)(’

VV
r

er
rG (5.4)

Internal Technical note
Tracking Report

Vers : 1.0 - Draft 2

Ref : IN_AVI_2_011

Date : 30-Nov-2004

Contract : AST3-CT-2003-502818

© AVITRACK Consortium – AVITRACK Restricted 8/45

The 2 eigenvalues O1 and O2 of matrix Z are then computed and a feature window W is considered to be a
good feature to track if it satisfies the condition:

),min(where 21m0m OOOOO ! (5.5)

This condition is based on the idea that if both eigenvalues are large, then the intensity change in both
directions is strong enough not to be caused by image noise. The global limit O0 is set to 1.0 for this
implementation of the algorithm.

Out of all the possible feature candidates for an object, the N features with the largest Om are selected. The
total number of features N tracked for an object O is determined from the object’s area and the global
parameter FEATURE_DENSITY, which lies in the range [0,1]. A density value of 1 is defined to represent the
case where the object’s area is completely covered by non-overlapping feature windows in a grid-like
fashion. The number N is further restricted to be within a reasonable upper and lower limit defined by
MIN_FEATURES_PER_OBJECT and MAX_FEATURES_PER_OBJECT.

(a)

(b)

Fig. 5.1(a) shows the features selected for the airplane object, while Fig. 5.1(b) shows the
values of the minimum eigenvalues Om (shown inverted). A high Om indicates pixels in the
image where the amount of bi-directional texture, such as corner-like areas, is high. Note how
the features selected by the KLT algorithm occur at points with high Om.

Internal Technical note
Tracking Report

Vers : 1.0 - Draft 2

Ref : IN_AVI_2_011

Date : 30-Nov-2004

Contract : AST3-CT-2003-502818

© AVITRACK Consortium – AVITRACK Restricted 9/45

)),’max(,min(

area
’

ECTES_PER_OBJMIN_FEATURECTES_PER_OBJMAX_FEATUR

NSITYFEATURE_DE2EWINDOW_SIZ

NN

N O

¹̧
·

©̈
§

(5.6)

To ensure that features of an object are selected as evenly as possible across the object’s area, a
minimum distance between features is enforced – this distance is currently set to the window size.

Fig 5.1(a), on the previous page, shows the features selected for the aeroplane object in frame #396 of
video sequence S3-A320-CAM2, while Fig 5.1(b) shows the values of Om for the object’s pixels. A high Om

indicates areas in the image where there is a strong bi-directional texture (high-frequency change in both
horizontal and vertical directions), such as corner-like areas. In the case of the aeroplane object of Fig 5.1,
there is a limited amount of these ‘textured’ areas and many of them occur near the object’s boundary. In
the selection process of the KLT algorithm, some of the features are chosen from the boundary – these
may not prove to be good features for tracking. Other unreliable features may occur on ‘artificial’ areas
caused by specular highlights, etc.

When tracking the features, two configuration parameters control the tracking process. If the residue H of
(5.2) becomes larger than MAX_RESIDUE, or if the number of iterations in the search process exceeds
MAX_ITERATIONS, then the feature’s state is set to ‘lost’. As features of an object are lost, new features are
selected to replace the lost ones, so as to try and maintain a constant number N of features for the object.
Also, if the area of the object increases with time, then N is adjusted accordingly.

5.2. FROM FEATURES TO OBJECTS

The KLT algorithm described above and in [2,3], considers features to be independent entities and tracks
each of them individually. Therefore, the KLT algorithm must be incorporated into a higher-level tracking
process that is able to group features into objects, maintain associations between the features and the
objects, and uses the individual tracking results of the features to track objects from one frame to the next,
taking into account interactions between objects such as object merging situations, object splitting,
stationary objects, etc.

5.3. THE OBJECT TRACKING ALGORITHM

For each object O being tracked, a set S of features is maintained, with the size of the set given by N in

(5.6). Given a list of known objects }{ iO at time t-1, the tracking process for time t can be summarised as:

1. Generate object predictions }{ iP for time t from the list of known objects }{ iO at t-1.

2. Run the KLT algorithm to track the features of }{ iP individually.

3. Given a list of measurement objects }{ jM detected by the motion detector at time t, match

predictions }{ iP to measurement objects }{ jM .

4. Any remaining unmatched predictions in }{ iP are set to ‘lost’. Any remaining unmatched

measurement objects in }{ jM are considered as potential new objects.

Internal Technical note
Tracking Report

Vers : 1.0 - Draft 2

Ref : IN_AVI_2_011

Date : 30-Nov-2004

Contract : AST3-CT-2003-502818

© AVITRACK Consortium – AVITRACK Restricted 10/45

5. Update the state of those predictions in }{ iP that were matched to measurement objects and

replace lost features. The final result is a list of tracked objects }{ iO at time t.

6. Let t = t+1 and repeat step 1.

These steps are described in further detail in the following sections.

5.3.1. GENERATE OBJECT PREDICTIONS

This initial step generates the set of object predictions }{P iP for time t from the list of known objects

}{ iO obtained at the end of the previous frame (t-1). For each object Oi, the prediction Pi is simply a copy

of Oi, with its state changed to PREDICTION.

1}{}{ � titi OP (5.7)

5.3.2. RUN THE KLT ALGORITHM

For each prediction Pi, its features in set S are tracked individually using the KLT algorithm described
earlier. Features marked as ‘lost’ by the KLT algorithm are removed from S.

5.3.3. MATCH PREDICTIONS TO MEASUREMENTS

This step uses the set of measurement objects }{M jM detected by the motion detector at time t. These

consist of connected regions of pixels labelled as ‘foreground’ by the motion detector. For this
implementation, the motion detector algorithm used is the Colour Mean and Variance algorithm described
in [4] – but any one of the other motion detection algorithms in [4] can also be used.

Predictions }{ iP are matched to measurement objects }{ jM using the tracking results of the features of

}{ iP obtained in the previous step. A match score function g is defined, which returns the total number of

features W of a prediction iP that reside within the bounding box of a measurement jM . An additional

score of 1 is added, if the prediction’s bounding box overlaps that of the measurement or if one is
completely inside the other. This is required in case there happens to be no features in the overlapping
region of a prediction and a measurement.

},:{),(jPji MWSWWMPf
i

�� (5.8)

The Matching Rules

In the ideal case, given a prediction iP , the above score function g should return a non-zero value for one

and only one of the measurements that matches iP , and zero for the rest. But objects, as viewed by a

camera, can interact with each other in complex ways – for example, objects can appear to merge, an
object may split into parts, be occluded, etc. A number of matching rules are used to handle these cases.

Internal Technical note
Tracking Report

Vers : 1.0 - Draft 2

Ref : IN_AVI_2_011

Date : 30-Nov-2004

Contract : AST3-CT-2003-502818

© AVITRACK Consortium – AVITRACK Restricted 11/45

Rule 1. Ideal Match:
The first matching rule handles the ideal matches mentioned above, i.e. a one-to-one match
between a prediction and a measurement, and identified by condition (5.9). The prediction is
marked as visible and its state is updated by the measurement’s data. The object will later on
also qualify for replacing lost features.

jlikMPfMPf

MPf

lijk

ji

zz�
!

,0),(,0),(

and0),(
(5.9)

Rule 2. Splitting Object:
The second matching rule handles the case when an object at time t-1 splits into several objects

when seen at time t. This occurs when a prediction iP matches with several measurement

objects, but no other prediction matches with any of these measurements – in other words, the
set of meaurements is partitioned into two subsets: the subset M1 of measurements that match

only with iP and the subset of those that do not match with iP :

10),(

and,10),(

and1110),(

MMMPf

ikMMMPf

MM,MMMPf

lli

jjk

jji

��
z��

!��!
(5.10)

The prediction is then split into new objects, one for each of the matched measurements in M1.

The features of the original prediction iP are then assigned to the new objects depending on

whether they reside within the new object’s bounding boxes or not. In this way, features are
maintained throughout an object splitting event. The object with the highest score is assigned the
object ID of the original prediction.

Rule 3. Merging Object:
The third matching rule handles merging objects. This occurs when more than one prediction
matches with a measurement region:

10),(

and,10),(

and1110),(

PPMPf

jkPPMPf

PP,PPMPf

ljl

iki

iji

��
z��

!��!
(5.11)

In this case the state of the predictions (such as position and bounding box) cannot be obtained
by a straightforward update from the measurement’s state, since only one combined (merged)
measurement is available from the motion detector. But an attempt is made to update the global
states of the predictions from the known local state of their tracked features.

The prediction’s new centre is estimated by taking the average relative motion of the prediction’s
features from the previous frame at time t-1 to the current one. This is based on the assumption
that the average relative motion of the features is approximately equal to the object’s global
motion – this may not be necessarily true for non-rigid objects undergoing large motion, and may
also be affected by the aperture problem due to the small size of the feature windows. Fig. 5.2
(next page) shows an example of how the tracking results of the features are used to estimate
the tracking result of an object while in a merged state.

Internal Technical note
Tracking Report

Vers : 1.0 - Draft 2

Ref : IN_AVI_2_011

Date : 30-Nov-2004

Contract : AST3-CT-2003-502818

© AVITRACK Consortium – AVITRACK Restricted 12/45

(a)

(b) (d)

(c)

Fig. 5.2 shows two vehicles merging together. The position of vehicle 4 (magenta colour),
is estimated from the average of the individual motion of the features that are tracked
successfully from the first frame to the second one (shown in (d)).

An attempt is also made to update the sizes of the bounding boxes of the predictions in order to
maximise the coverage of the measurement region by the combined predictions’ bounding boxes.
This handles cases where objects are moving towards the camera while in a merged state and
hence their sizes increase. If not done, the result is parts of the measurement region that are not
‘explained’ by any of the predictions.

If two objects remain in a merged state for a long time (configured to 70 frames for these tests)
and there has been little relative motion between them during the time they have been in a
merged state, then the two objects are combined into one. The ID of the largest object is
assigned to the final object.

Handling Stationary Objects

The motion detector used for this implementation allows objects that have become stationary to be
integrated into the background model. A multi-layered background model is used in order to allow
stationary objects to be re-activated once they start moving again. Each layer has an associated binary
mask that indicates the pixels that belong to that layer, so the objects added to the background model can
have arbitrary shape.

Internal Technical note
Tracking Report

Vers : 1.0 - Draft 2

Ref : IN_AVI_2_011

Date : 30-Nov-2004

Contract : AST3-CT-2003-502818

© AVITRACK Consortium – AVITRACK Restricted 13/45

Detecting whether an object is stationary can either be done by the motion detector or the tracker itself –
both methods have been implemented. The tracker checks whether an object has become stationary by
checking for motion of the features of that object. If any of the features moves by more than 1 pixel, then
the object is not stationary. Alternatively, the tracker can rely on the motion detector to determine if an
object is stationary or not. When both methods were tested on the AVITRACK datasets, the second
method was found to be more reliable. The reason is that the features are sparsely distributed across the
region and allow the motion to be determined at only a limited number of points.

A count is maintained of the number of consecutive frames that the object has been stationary. When this
count exceeds the parameter STATIC_COUNT_INCORPORATE, the object is integrated as a new background layer
into the background model and using the pixels labelled as ‘foreground’ as the background layer mask.

In the AVITRACK sequences, there are several instances where an object is in the process of slowing
down to become stationary, but at the same time, part of the object starts moving – for example, as a
vehicle is coming to rest, a person emerges from the vehicle and starts moving in front of the vehicle (both
vehicle and person remain merged and indistinguishable). Using a simple motion test for the whole ‘object’
(vehicle+person) will not handle these cases correctly – the person’s motion keeps the vehicle from
becoming stationary.

As a result, the motion test was relaxed so that if only a small and localised part of an object remains in
motion, the whole object is integrated into the background model and a new object is created for the
moving part. The bounding box of the part of the object still in motion is computed, and if the ratio of the
area of this bounding box and the area of the object is below a certain threshold
STATIC_OBJECT_REACTIVATION_MOTION_RATIO, then the object is considered to be stationary. Fig. 5.3 (next page)
shows an example from the AVITRACK sequence. One side effect of this motion test relaxation is that
‘ghosts’ may occur when the part of the object in motion uncovers part of the original object – the static
object handling algorithm was extended to try to detect and eliminate such ghosts.

Once a stationary object is integrated into the background model, the motion detector will still continue to
return a measurement for that object at each frame. The measurement is labelled as STATIC, to differentiate
it from other measurements arising from objects in motion. The tracker uses this to check if the object has
started moving again and needs to be re-activated1.

A search is made for other measurement objects that overlap the static measurement – these must be new
measurements (newly detected motion) or else already-seen objects that were first seen within the bounds
of the static measurement. If their total area compared to the static measurement’s area is larger than the
threshold STATIC_OBJECT_REACTIVATION_MOTION_RATIO, then the static object is re-activated and the other
measurement objects deleted. If not, then it means that only small part(s) of the static object have started
to move again and new object(s) are created for the moving part(s). If the area in motion continues to
increase, once it exceeds the threshold the static object is completely re-activated and the object(s)
representing the small moving part(s) deleted.

The Matching Rules for Stationary Objects

The set of matching rules mentioned earlier have been extended to include cases when stationary objects
and normal objects interact with each other. This is required since predictions are still maintained by the
tracker for stationary objects and the motion detector returns static measurements for objects integrated
into its background model.

1 By re-activation, it is meant that the background layer for that object is removed from the background model.

Internal Technical note
Tracking Report

Vers : 1.0 - Draft 2

Ref : IN_AVI_2_011

Date : 30-Nov-2004

Contract : AST3-CT-2003-502818

© AVITRACK Consortium – AVITRACK Restricted 14/45

#1420: (a) (e) (i)

#1424: (b) (f) (j)

#1432: (c) (g) (k)

#1445: (d) (h) (l)

Fig. 5.3 Handling of a stationary object with partial motion within it.
These series of figures (a) to (d) show a conveyor belt vehicle coming to rest, and the driver leaving the
vehicle. Figures (e) to (h) show the pixels labelled as foreground (black) and pixels integrated into the
background model (light grey), while figures (i) to (l) show the pixels that are actually in motion. In frame
1424, the bounding box of the pixels actually in motion (red box in (j)) compared to the bounding box of the
foreground pixels becomes less than the threshold STATIC_OBJECT_REACTIVATION_MOTION_RATIO, and
therefore the object is integrated into the background in the next frame (light grey area in (g)). This allows
the person to be separated from the vehicle, even though some parts of the vehicle were still in motion at
that time. Note that in (d), a new object is detected (bounded by a yellow box) – this is the person’s ghost
and is a side-effect caused by background integration. These ghosts are eliminated later on by the Feature
Tracker.

Internal Technical note
Tracking Report

Vers : 1.0 - Draft 2

Ref : IN_AVI_2_011

Date : 30-Nov-2004

Contract : AST3-CT-2003-502818

© AVITRACK Consortium – AVITRACK Restricted 15/45

Rule 4. Ideal Static Match:
The first such rule handles ideal matches between a static prediction and a static measurement –
a one-to-one match. This is the same as Rule 1 above, for normal objects, except that the
prediction and measurement must have their state set to STATIC.

2,10),(,0),(

andstatic,0),(

12

2121

slskMPfMPf

MPMPf

lSSk

SSSS

zz�
!

(5.12)

Rule 5. New Motion within Static:
If a static prediction matches a static measurement, as well as other new measurements, then
this rule applies. The other new measurements must not match any other prediction apart from
the static one. If the area of the new measurements is large enough, the static object is re-
activated according to the method described previously.

2,10),(

1,10),(,0),(

and1110),(

andstatic,0),(

1

2

1

2121

slMMMPf

skMMMPfMPf

MM,MMMPf

MPMPf

llS

jSkjk

jjS

SSSS

z��
z��

!��!
!

(5.13)

Rule 6. Existing Motion within Static:
If a static prediction matches a static measurement, as well as other measurements that in turn
match other predictions, then this rule is used. The other measurements represent existing
objects that are moving in front of the static object. The static object is not reactivated.

2,10),(

and10),(

and1110),(

andstatic,0),(

1

2

1

2121

slMMMPf

skMPf

MM,MMMPf

MPMPf

llS

Sk

jjS

SSSS

z��
z

!��!
!

(5.14)

Rule 7. New and Existing Motion within Static:
This is a combination of Rules 5 and 6. The non-static measurements matching with the static
prediction are divided into ‘new motion’ ones (those that do not match any other prediction) and
‘existing motion’ (match another prediction), and each is handled according to rule 5 and rule 6
respectively.

Combining the Matching Rules

The matching rules described above address cases such as object splitting, merging, etc., separately. In
most cases, a combination of these cases will arise at any one time. The following algorithm indicates how
these rules are called iteratively to handle most of the complex combination of cases that can arise.

1. For each remaining unmatched Static Prediction or unmatched Static Measurement:

1.1. Run Rule 5: New Motion within Static

1.2. Run Rule 6: Existing Motion within Static

1.3. Run Rule 7: New and Existing Motion within Static

1.4. Run Rule 4: Ideal Static Match

2. For any remaining unmatched Prediction:

Internal Technical note
Tracking Report

Vers : 1.0 - Draft 2

Ref : IN_AVI_2_011

Date : 30-Nov-2004

Contract : AST3-CT-2003-502818

© AVITRACK Consortium – AVITRACK Restricted 16/45

2.1. Run Rule 1: Ideal Match

2.2. Run Rule 2: Object Splitting

2.3. Run Rule 3: Object Merging

3. Check Matched Static Predictions for potential re-activation

4. Handle Ghosts caused by incorporating Static Objects into the Background Model

5. Check if Matched Predictions have become stationary and include them into the Background
Model.

5.3.4. HANDLE NEW AND LOST OBJECTS

After matching predictions }{ iP to measurements }{ jM , any remaining unmatched Predictions are

considered to be ‘lost’. A count is kept of how many consecutive frames, a prediction has been lost. If this
count exceeds the parameter MAX_KEEP_ALIVE, then the prediction is deleted permanently

Any remaining unmatched Measurements will be considered to be new objects that first appeared in the
scene at time t. The KLT algorithm is used to select features for these new objects, using the pixels
labelled foreground as a mask.

5.3.5. UPDATE OBJECT STATE

For each prediction that has been successfully matched with a measurement(s), if the number of remaining
features is less than the allowed number N, as calculated by (5.6), then the KLT algorithm is used to select
new features to replace the lost ones. In case of merged objects, the search for new features is performed
only in the non-overlapping parts of the merged region.

The remaining features are also checked to make sure that they are within the bounding box of the
prediction and have not become attached to some part of the background. Otherwise, the object can leave
a trail of incorrectly-tracked features behind it as it moves across the scene.

5.4. EXPERIMENTAL RESULTS

This implementation of the Local Feature Tracker has been integrated into the AvitrackFrameTracker
application [14] and was evaluated using several of the AVITRACK test sequences. Overall, the algorithm
was found to have a good performance. More specifically:

x Objects can be tracked successfully with a low and sparse number of features (a feature density
of 0.2, and a lower minimum of 20 features was found to give good results).

x The matching rules used by the Feature Tracker can explain most of the interactions in the scene.

The Feature Tracker also suffers from problems:

x Local features tend to have a short lifetime, so they have to be replaced when they are lost (no
longer tracked). This can cause problems when objects remain merged or occluded for a long
time, as the loss rate is normally faster than the replacement rate.

Internal Technical note
Tracking Report

Vers : 1.0 - Draft 2

Ref : IN_AVI_2_011

Date : 30-Nov-2004

Contract : AST3-CT-2003-502818

© AVITRACK Consortium – AVITRACK Restricted 17/45

x For objects with little texture, the ‘best’ local features tend to be found near the boundary of the
object. These windows include both part of the object and part of the background and are less
reliable to track.

x The tracker has difficulty in initialising the tracking of new objects if these appear within a cluttered
area.

x The algorithm is sensitive to some of the parameters and is also affected by noise from the motion
detector, as it uses the regions returned by the motion detector as the basis for feature selection
and during the matching phase.

5.5. CONCLUSIONS

This implementation of the Local Feature Tracker was found to give good results when applied to
AVITRACK test sequences. The processing speed is also quite good (approx. 8 to 10 fps at present). With
further optimisation, it should not be a problem to achieve run-time performance. Some problems were
identified with the tracking results of the algorithm and these will be addressed to try and improve the
tracking accuracy of the algorithm.

Internal Technical note
Tracking Report

Vers : 1.0 - Draft 2

Ref : IN_AVI_2_011

Date : 30-Nov-2004

Contract : AST3-CT-2003-502818

© AVITRACK Consortium – AVITRACK Restricted 18/45

6. COLOUR TRACKER

This algorithm tracks objects by using their global colour information. In general, colour information is more
robust to changes in an object’s size and orientation, and should be more stable over longer periods of
time than other non-colour based features. The object’s colour histogram is used as the colour model.

This tracker uses a combination of two methods to track objects: a colour histogram similarity measure,
based on the Bhattacharyya coefficient, is used for matching isolated objects directly [5,6]; and the
CamShift algorithm (an extension of the Mean Shift algorithm) is used to track objects when they are in a
merged or partially occluded state [7,8].

6.1. THE OBJECT COLOUR MODEL

The HSV colour space was selected for representing the object’s colour histogram, since this colour space
separates the chromaticity components (Hue and Saturation) from the brightness component (Value). The
chromaticity components are more robust to illumination changes and to changes in the object’s
orientation.

However one disadvantage of the HSV colour space is the instability that occurs in the hue component
when the saturation or the brightness value is very low. For this implementation, pixels with a saturation or
value less than maxS05.0 and maxV05.0 respectively, are considered to be “colourless” pixels (hue

undefined).

The object colour model consists of a 2D hue-saturation histogram, with the number of bins specified by
the parameters NUM_HUE_BINS and NUM_SATURATION_BINS. Only pixels with a valid hue are used for building the
hue-saturation histogram. From some initial tests with this tracker, it was found that adding a 1D histogram
for representing the brightness of the “colourless” pixels improves the tracking of objects with very little
colour. The number of bins for this 1D histogram is specified by parameter NUM_VALUE_BINS.

10

10,10

BINSNUM_VALUE_

TION_BINSNUM_SATURANSNUM_HUE_BI

..)(

....),(

�
���

�
�

iif

ijif

V

HS j
(6.1)

The histograms are stored in a normalised form, i.e. they must satisfy the following condition:

1)(),(
,

 ¹̧
·

©̈
§�¸̧¹

·¨̈©
§ ¦¦

�� i
V

ji
HS ifjif (6.2)

6.2. THE BHATTACHARYYA COEFFICIENT

A histogram can be viewed as a discrete probability distribution function and there are several methods
available in the field of statistics for comparing distribution functions. One such measure is the
Bhattacharyya metric. This metric has many desirable properties, many of which are examined in [5,6],

including self-consistency and having a fixed bias (compared to the well-known 2F test).

Given two discrete normalised histograms f and g , where)(if is the number of colours in bin i of

histogram f , the Bhattacharyya coefficient BU is defined as:

Internal Technical note
Tracking Report

Vers : 1.0 - Draft 2

Ref : IN_AVI_2_011

Date : 30-Nov-2004

Contract : AST3-CT-2003-502818

© AVITRACK Consortium – AVITRACK Restricted 19/45

¦

 N

i
B igifgf

1

)()(),(U
provided: ¦¦

ii
igif 1)(,1)(

(6.3)

The coefficient BU is within the range [0..1], with BU =1 when the two histograms match perfectly. Then

the similarity measure Mcol for the colour models of any two objects is defined to be equal to (6.4), returning
a value within the range [0..1], with 1 for a perfect match.

),(),(),(col VVBHSHSB gfgfgfM UU � (6.4)

This similarity measure is used for matching objects when they are isolated from each other. Their
histograms are considered to match if the value Mcol is larger than COLOUR_SIMILARITY_THRESHOLD.

6.3. THE CAMSHIFT ALGORITHM

For non-isolated objects, a direct matching of the colour histograms is not possible, as it cannot be
determined directly which part of the merged region belongs to which object. Instead, the CamShift
algorithm is used to track the objects through merging and partial occlusion. CamShift stands for
“Continuously Adaptive Mean Shift” algorithm, described in [8], and it is a generalisation of the Mean Shift
algorithm of [7].

Mean Shift Algorithm

Given an object O that has been successfully tracked at time t-1, the Mean Shift algorithm is used to find
its new position at the current time t. From the position of the object at time t-1, and a prediction generated
by the tracker of its new position at time t, a search area is defined. The size of this search area is
controlled by parameter MAX_SEARCH_DISTANCE.

The object’s colour histogram is used to generate a probability map Mprob of this search area. This is
performed by taking the HSV colour c of each pixel (x,y) within the search area of the image, locating the
bin in the histogram for this pixel colour value, and then filling the probability map with the histogram value.
Since the histogram is normalised, it can be viewed as a discrete probability distribution function, and the
histogram value indicates the probability that a pixel belonging to the object takes a colour value within the
range of that particular histogram bin.

For this implementation, only pixels within the search area that have been labelled as foreground by the
motion detector are considered; the rest are set to 0 in the probability map. Also, the histogram used for
the back-projection depends on whether the pixel’s colour c is ‘colourless’ or not. In (6.5) below, the
function b(), maps the colour value into the corresponding bin of the histogram.

� �� �°°¯
°°®

�

pixel’colourless’aispixelif)(

,,wherepixelcoloured’’aispixelif)(),(

pixel’foreground’anot is),(if0

areasearch),(if0

),(prob

VV

VSHSHHS

cbf

cccccbcbf

yx

yx

yxM (6.5)

Fig 6.1 (next page) shows the probability map that is generated for an object, together with its colour
histogram model.

Internal Technical note
Tracking Report

Vers : 1.0 - Draft 2

Ref : IN_AVI_2_011

Date : 30-Nov-2004

Contract : AST3-CT-2003-502818

© AVITRACK Consortium – AVITRACK Restricted 20/45

(a) (b)

(c) (d)

Fig. 6.1 (a) shows the 2D hue-saturation and 1D brightness histograms for the person shown in (b). This
colour model is back-projected onto image (d) and the probability map within the search area is shown in
(c). Only pixels labelled as foreground by the motion detector are considered. The new object’s position as
tracked by the CamShift algorithm is shown in red in (d).

Given the probability map Mprob, the Mean Shift algorithm finds the centre of mass (the mean location)
within the search area, by computing the zeroth and first moments:

00

01

00

10

prob01

prob10

prob00

,

),(

),(:momentsfirst

),(:momentzeroth

M

M
y

M

M
x

yxMyM

yxMxM

yxMM

cc

x y

x y

x y

¦¦
¦¦
¦¦

(6.6)

This is then used to change the centre of the search window by taking the average of the previous window
centre),(00 cc yx and the new mean location),(cc yx .

> @),(),(
2

1
),(00 cccccc yxyxyx �m (6.7)

 sat

 hue

val

Internal Technical note
Tracking Report

Vers : 1.0 - Draft 2

Ref : IN_AVI_2_011

Date : 30-Nov-2004

Contract : AST3-CT-2003-502818

© AVITRACK Consortium – AVITRACK Restricted 21/45

The process of finding the mean (6.6) and shifting (re-centering) the window (6.7) is repeated until the
process converges to 1 pixel, or until the maximum number of iterations is reached, in which case a
tracking failure occurs. Tracking can also fail if the zeroth moment becomes 0 – this happens when the
entire search area has zero probability.

CamShift Algorithm

One problem with the Mean Shift algorithm is the in-built assumption that the colour distribution remains
unchanged. This is certainly not the case when tracking objects, as the colour histogram will undergo
changes from one frame to the next. The CamShift algorithm generalises the Mean Shift algorithm by
taking into account the fact that colour distributions change dynamically. CamShift uses the zeroth moment
to continuously adapt the size of the search window when tracking an object [8].

6.4. THE OBJECT TRACKING ALGORITHM

Given a list of known objects }{ iO at time t-1, the tracking process for time t can be summarised as

follows:

1. Generate object predictions }{ iP for time t from the list of known objects }{ iO at t-1.

2. Given a list of measurement objects }{ jM detected by the motion detector at time t, build the

colour models for the measurement objects.

3. The list of predictions }{ iP is matched with the measurement objects }{ jM .

4. Any remaining unmatched predictions in }{ iP are set to ‘lost’. Any remaining unmatched

measurement objects in }{ jM are considered as possible new objects.

5. Update the state of those predictions in }{ iP that were matched to measurement objects. If the

predictions are not in a merged state, then their colour model is updated. The final result is a list of

tracked objects }{ iO at time t.

6. Let t = t+1 and repeat step 1.

These steps are described in further detail in the following sections.

6.4.1. GENERATE OBJECT PREDICTIONS

Given a list of objects }{ iO that have been tracked successfully in the previous frame (t-1), we generate

predictions }{P iP of where these objects should be located at time t. These predictions are based on

the assumption that an object continues moving with approximately the same speed and direction as when
last seen in the previous few frames. For each object, a history H of the last known positions of the object
is kept, and from this the predicted motion is generated. The length of this motion history is set to 5 for this
implementation to reduce the effects of noise, and the history is weighted to give more evidence to the
most recent entries.

Internal Technical note
Tracking Report

Vers : 1.0 - Draft 2

Ref : IN_AVI_2_011

Date : 30-Nov-2004

Contract : AST3-CT-2003-502818

© AVITRACK Consortium – AVITRACK Restricted 22/45

'�

�����'

�����

� c
����

xxx

xxxxxx

xxxxx

1

54321

54321

1.01.02.025.035.0

},,,,{

tt

ttttt

tttttH

(6.8)

6.4.2. BUILD COLOUR MODELS

The motion detector returns a list of measurement objects }{M jM detected by the motion detector at

time t. The colour models for these measurements are constructed at this stage, according to (6.1) and
(6.2), and then these are used in the next step for matching and tracking.

6.4.3. MATCH PREDICTIONS TO MEASUREMENTS

Taking all possible pairs of predictions and measurement objects)(ji M,P that are within

MAX_SEARCH_DISTANCE of each other, the histogram similarity measure Mcol, defined by (6.4), is used to
generate similarity scores. These are placed in a match score table S. If a score is below the parameter
COLOUR_SIMILARITY_THRESHOLD, then the score is set to 0. If a prediction and a measurement overlap, then
an additional score is added to ensure that it is not 0.

The Matching Rules

For matching predictions to measurements, this tracker uses a similar approach to that of the Local
Feature Tracker – together with the score table, a set of matching rules are used to handle interactions
between objects, such as object splitting, merging situations, etc. Much of this similar functionality is in fact
implemented as common code available to both trackers. The matching rules used by the Colour Tracker
are listed below. Only differences specific to the colour tracking algorithm are described in detail below –
for the common functionality, please refer to the more detailed description of the previous tracker (§5.3.3).

Rule 1. Ideal Match:
A one-to-one match between a prediction and a measurement. The same condition applies
except for using the score table S instead of the matching function g.

Rule 2. Splitting Object:
A prediction matches with several measurements – a one-to-many match. The prediction is split
into new objects, one for each of the matched measurements. The new prediction objects are
assigned the colour models of their corresponding measurements with which they are associated
(these are the colour models created in §6.4.2)

Rule 3. Merging Objects with CamShift Tracking:
The previous rules made use of the Bhattacharyya similarity measures directly from the score
table, as the predictions and measurements are distinct from each other, and so a histogram
comparison is sufficient. But this third matching rule applies to cases where predictions and
measurements are merged together and no longer distinct. Instead, the CamShift algorithm is
used to track the predictions while in a merged state. The condition below identifies such cases:

ikjk

ji

PPMPS

MPS

z!
!

somefor 0),(

and0),(
(6.9)

Internal Technical note
Tracking Report

Vers : 1.0 - Draft 2

Ref : IN_AVI_2_011

Date : 30-Nov-2004

Contract : AST3-CT-2003-502818

© AVITRACK Consortium – AVITRACK Restricted 23/45

Using the predicted position txc of iP given by (6.8), the search area is defined as the bounding

box of the prediction centred at txc and enlarged by MAX_SEARCH_AREA. The probability map of

this search area is generated by histogram back-projection as described in (6.5). Only those
pixels of the search area labelled ‘foreground’ are considered – for the rest the probability map is
set to 0.

The CamShift algorithm is then performed on this search area and using the probability map. The
output of the CamShift algorithm can be one of the following 3 outcomes:

(1) Tracking fails because the maximum number of iterations is exceeded while performing
the Mean Shift algorithm,

(2) Tracking fails because the zeroth moment is 0,

(3) The prediction is tracked successfully, and CamShift returns the new position tx of the

prediction at time t.

In case of the first two outcomes, the state of the prediction iP is set to ‘lost’. If iP is tracked

successfully, an extra verification step is performed. This consists of building the colour model at
the new position tx returned by the CamShift algorithm and comparing this to the prediction’s

existing colour model using the histogram similarity measure (6.4). If the two colour models do
not match, then tracking is considered to have failed; else a success is reported. This extra
verification step is needed because the CamShift tracker can sometimes become distracted and
drift away from its real target.

Handling Stationary Objects

The handling of stationary objects is identical to that of the Feature Tracker, except that the Colour Tracker
checks for stationary objects by comparing the motion of the centre of the object.

Combining the Matching Rules

The following algorithm indicates the order in which the matching rules are called:

1. For each remaining unmatched Static Prediction or unmatched Static Measurement:

1.1. Run Rule 5: New Motion within Static

1.2. Run Rule 6: Existing Motion within Static

1.3. Run Rule 7: New and Existing Motion within Static

1.4. Run Rule 4: Ideal Static Match

2. Run Rule 1: Ideal Match

3. Run Rule 2: Object Splitting

4. For any remaining unmatched Prediction:

4.1. Run Rule 3: Object Merging with CamShift Tracking

5. Check Matched Static Predictions for potential re-activation

6. Handle Ghosts caused by incorporating Static Objects into the Background Model

Internal Technical note
Tracking Report

Vers : 1.0 - Draft 2

Ref : IN_AVI_2_011

Date : 30-Nov-2004

Contract : AST3-CT-2003-502818

© AVITRACK Consortium – AVITRACK Restricted 24/45

7. Check if Matched Predictions have become stationary and include them into the Background
Model.

6.4.4. HANDLE NEW AND LOST OBJECTS

After matching predictions }{ iP to measurements }{ jM , any remaining unmatched Predictions are

considered to be ‘lost’. A count is kept of how many consecutive frames, a prediction has been lost. If this
count exceeds the parameter MAX_KEEP_ALIVE, then the prediction is deleted permanently

Any remaining unmatched Measurements will be considered to be new objects that first appeared in the
scene at time t.

6.5. EXPERIMENTAL RESULTS

This tracker has been integrated into the AvitrackFrameTracker application [14]. When it was tested with
AVITRACK test sequences, it was found to perform quite badly, with a lot of tracking errors. The main
reason is that the majority of objects in AVITRACK are colourless and similar to each other (in terms of
their brightness histogram). This then causes the Mean Shift algorithm to lose track of the object and it
starts drifting around the image, especially in areas of clutter.

If reliable colour information is available in the scene, such as when tested against the PETS 2001 dataset
1, the results of the Colour Tracker were found to be good. This implies that the implementation of the
algorithm appears not to be at fault.

6.6. CONCLUSIONS

This implementation of the Colour Tracker performs quite badly on the AVITRACK test sequences. The
main reason is due to the lack of colour information in most of the objects being tracked. Further work
needs to be done to try and improve the tracking results.

Internal Technical note
Tracking Report

Vers : 1.0 - Draft 2

Ref : IN_AVI_2_011

Date : 30-Nov-2004

Contract : AST3-CT-2003-502818

© AVITRACK Consortium – AVITRACK Restricted 25/45

7. CLUSTER TRACKER

The tracking of moving objects inside a sequence taken from a fixed camera usually involves image
differencing and posterior thresholding. After this processing, a cloud of points is obtained that later,
somehow, must be grouped and assigned to clusters that coarsely represent moving objects. Performing
this process without performing object identification is a difficult task. However, accurate object
identification is a time-consuming task, so that if the tracking must be carried out in real-time this option is
not available.

In [9-11], a tracking algorithm based on grouping clusters of moving points without object recognition is
developed. This algorithm is based on a probabilistic generative model for the clusters, which allows
maximum-likelihood estimation of the cluster parameters by the EM algorithm. The generative model is
non-Gaussian in grey-level values, thus providing a better fit to the statistics of natural images. Also, the
number of clusters is not fixed a priori, but dynamically updated on the basis of evidence from the image.
In this respect, this method is similar to approaches such as layers of support [12].

Along [9-11], different aspects of the algorithm have been changed, but a common structure can be
extracted. Based upon this structure, a new implementation of the algorithm has been proposed and
tested. This new implementation introduces some changes on the original algorithm which make it faster
without losing performance.

7.1. DESCRIPTION OF THE ORIGINAL ALGORITHM

As stated in §7, although different versions of the algorithm have been described, its essential
characteristics remain unchanged and can be summarized as follows:

1. Model is a mixture of two kinds of clusters:
a. Target clusters.
b. Background cluster.

2. Every model m is characterized by the probability))(,(uIufm

&& it has of generating a pixel with co-

ordinates u
&

and gray-level value)(uI
&

.

3. This probability is a separable function of the pixel co-ordinates and of the pixel gray level, so that:

))(,(uIufm

&&
=))(()(uIhug mm

&& � .

4. Model parameters are determined by the Expectation-Maximization (EM) algorithm.

In the following subsections, an outline of these characteristics is described.

Target clusters

The probability))(,(uIufm

&&
that a pixel with coordinates u

&
and gray level)(uI

&
is generated for target

cluster m is given by:

))(,(uIufm

&&
=))(()(uIhug mm

&& � (7.1)

where:

¹̧
·

©̈
§ '�¦�'�¦ �

mm
T
m

m

m uuug 1

2

1
exp

2

1
)(S
&

(7.2)

Internal Technical note
Tracking Report

Vers : 1.0 - Draft 2

Ref : IN_AVI_2_011

Date : 30-Nov-2004

Contract : AST3-CT-2003-502818

© AVITRACK Consortium – AVITRACK Restricted 26/45

quIhm
1))((&

(7.3)

In (7.2) T
m

T
m cuu)(

&& � ' is the vector difference between the pixel’s co-ordinates and the cluster center

mc
&

(one of the cluster parameters). The other cluster parameters are the elements of 1�¦m , the covariance

matrix of the cluster. This equation leads to a geometrical interpretation of))(,(uIufm

&&
as a exponentially-

decreasing function of the pixel co-ordinates, with ellipsoidal-like contour lines. To see this, the m¦ can be

decomposed by means of Singular Value Decomposition into the following product:

1

cossin

sincos

0

0

cossin

sincos
�

¸̧¹
·¨̈©

§
��¸̧¹

·¨̈©
§�¸̧¹

·¨̈©
§
� ¦ TT

TT
TT
TT

MIN

MAX
j L

L
(7.4)

In Fig. 7.1, a picture of the geometrical interpretation of the model parameters can be observed.

Fig. 7.1. Geometrical interpretation of))(,(uIufm

&&
.

Equation (7.3) means that the probability))(,(uIufm

&&
is independent of the gray level of the pixel, as q is

constant and equal to the number of different grey levels that can be encountered in the image (typically, q
= 256 for 8-bit grey level images).

Background cluster

Equation (7.1) also describes the probability distribution for the background cluster. However, the
expression for the)(ugm

&
and))((uIhm

&
functions changes:

mug j
1)(&

(7.5)

¸̧¹
·

¨̈©
§�

00
0

)(
exp

2

1
))((P

G
P

u
uIh

&
&

(7.6)

As can be seen in (7.5), the probability that a pixel belongs to (or is generated by) the background cluster
does not depend on the pixel co-ordinates, as the term m in (7.5) is constant and equal to the total number

/0$;
/0,1

T

:jc
&

Internal Technical note
Tracking Report

Vers : 1.0 - Draft 2

Ref : IN_AVI_2_011

Date : 30-Nov-2004

Contract : AST3-CT-2003-502818

© AVITRACK Consortium – AVITRACK Restricted 27/45

of pixels of the image. However, as shown in (7.6), it depends on)()()(uRuIu
&&& � G , the difference

between the grey level of the pixel and the corresponding one in the reference image. The only parameter
of the background cluster is 0P , calculated as the mean of the absolute value of the grey-level difference

of pixels in the background.

7.2. THE CLUSTER TRACKING ALGORITHM

The algorithm can be summarized in the following steps:

1. Detection of new isolated clusters.
2. Optimisation (EM algorithm).
3. Cluster splitting.
4. New optimization (if any cluster has split).
5. Cluster merging and elimination.
6. Updating of the reference image and background cluster parameters.

In the following subsections, each of these steps will be briefly explained.

Detection of new isolated clusters.

New clusters are detected by locating maxima in the difference image, after accounting for the clusters
already known to be present in the previous frame of the image sequence. Specifically, a “corrected”
image difference is computed, in which each grey-level difference is weighted by the probability of its
belonging to the background cluster:

))(,()()(0
0 uIupuuc

&&&& � GG (7.7)

where 0
0p is the a posteriori probability of the background cluster calculated in the previous frame. The a

posteriori probabilities of every cluster are computed as:

¦

�
�

N

k
kk

jj
j

Iufw

Iufw
up

1

),(

),(
)(

&

&
&

(7.8)

where all the calculus are performed with the cluster parameters carried over from the previous frame.

This corrected image difference in (7.7) is smoothed and downsampled by a factor of to obtain the coarse-
grained difference image. Local maxima of are assumed to arise from new targets if the corresponding
value of is greater than a threshold. This threshold is deduced in [11] as:

¸̧¹
·¨̈©

§ �
0

0 2
log1 PP q

(7.9)

Optimisation

The cluster parameters are iteratively updated by means of the EM algorithm [13], using the a posteriori
probabilities given by (7.8). In [9, 10], the EM algorithm is employed, while in [11] the MAP (maximum a
posteriori) version of the EM algorithm is used, to avoid large variations of the cluster parameters.

Internal Technical note
Tracking Report

Vers : 1.0 - Draft 2

Ref : IN_AVI_2_011

Date : 30-Nov-2004

Contract : AST3-CT-2003-502818

© AVITRACK Consortium – AVITRACK Restricted 28/45

Cluster splitting

Clusters are considered for splitting if their shape is very different from the ellipsoid described by the top-
hat distribution:

°̄
°®
 d'�6�'¹̧·©̈§ 6 �

�

otherwise0

4if4)(
1

1

jj
T
jjTH

j
uuug
&&& S

(7.10)

using the same centroid and covariance as estimated with the Gaussian model. To test whether the
observed density is significantly different from this expectation, the ellipsoid is divided into 9 sections
orthogonally to its main axis and the squared deviation of the observed density from the expected density
is computed for each section, and normalized by the expected density. If the largest negative deviation
from the expected density is below a threshold, the cluster is split at the location of the bin with this largest
negative deviation.

New optimization (if any cluster has split).

Only if some cluster has been split, a new pass of the EM algorithm is performed in order to adjust the new
cluster parameters.

Cluster merging and elimination.

Two clusters are merged if:

- Their relative Mahalanobis distances are less than a certain threshold, and
- The merging cost is under a certain quantity.

One cluster is eliminated if the cost of merging it with the background is under a certain threshold.

Cluster merging and elimination is a key step in the algorithm. The functionals that measure the cost of
merging two clusters change depending on the algorithm version, but all of them share the idea that a
cluster with low density (few moving points inside a certain Mahalanobis distance of the cluster centre) is
more likely to be merged.

One important question that arises when two clusters are going to be merged is the identity preservation,
i.e. what identity must be assigned to the new resultant cluster. When a target cluster is split into two, the
larger of the new clusters is assigned the identity of the parent cluster. When two target clusters are
merged, the new cluster is assigned the identity of the larger of the two merged clusters, unless the smaller
cluster is the parent of the larger one, in which case the identity of the smaller cluster is assigned to the
new one.

Updating of the reference image and background cluster parameters.

Lastly, the reference image for frame t+1 is calculated by updating the reference image for frame t with the
values of the difference image in the same frame. The update of each pixel of the reference image is
weighted by the posterior probabilities of its belonging to the background cluster as stated in (7.11).

)(
1

)()(0
1 upurur tt

r

tt &&& GW �� �
(7.11)

Internal Technical note
Tracking Report

Vers : 1.0 - Draft 2

Ref : IN_AVI_2_011

Date : 30-Nov-2004

Contract : AST3-CT-2003-502818

© AVITRACK Consortium – AVITRACK Restricted 29/45

where rW is a parameter that measures the velocity of adaptation to slow changes in the background. Also,

the background parameter is updated as:

¦¦ � �

u

t
u

tt

t

up

uup
u

&

&

&

&&
&

)(

)()(
)(

0

01
0

GP (7.12)

7.3. THE NEW IMPLEMENTATION

In order to speed up the algorithm without sacrificing performance, the algorithm has been reduced to
three main steps, and some of the procedures have been changed. The new proposed structure is:

1. Detection of new isolated clusters (different from the original).
2. Optimisation, including cluster merging and elimination.
3. Updating of the reference image and background cluster parameters.

In what follows, a detailed explanation of the motivations and advantages achieved with the proposed
changes will be carried out.

Detection of new isolated clusters (different from the original).

The new procedure proposed for the detection and initialization of the new isolated clusters is as follows:

1. Detecting local maxima in the corrected difference image.
2. Grouping those maxima belonging to the same connected blob.
3. Calculating the centre and correlation matrix from the blob data

In the former versions of the algorithm, each point from (7.7) above the threshold (7.9) was considered as
the center of a new cluster. The covariance matrices of these new clusters were initialised with default
values. This usually generated a large quantity of new clusters that slowed down the algorithm, as the
duration of the EM phase greatly depends on the number of clusters considered. By grouping together the
points belonging to the same connected blob, two advantages are achieved:

- First, less new models are generated, with the subsequent savings in time in all the
posterior processing.

- Second, accurate estimations can be made for the initial values of the cluster parameters.

These values can be obtained from the moments of order 0, 1, and 2 of the blobs. The 0th-order moment
(area) divided by the total number of pixels on the image gives a good approximation for the a priori
possibility that a pixel belongs to the cluster. The first-order moments can be used for the center of the
cluster, and the covariance matrix is obtained directly from the central second-order moments mij as:

¸̧¹
·¨̈©

§ 6
0211

1120

mm

mm
(7.13)

Optionally, a dilate operation can be performed on the binary image of the thresholded image before blob
labeling. This usually reduces the number of new clusters found, without causing a loss of performance.

Internal Technical note
Tracking Report

Vers : 1.0 - Draft 2

Ref : IN_AVI_2_011

Date : 30-Nov-2004

Contract : AST3-CT-2003-502818

© AVITRACK Consortium – AVITRACK Restricted 30/45

Optimisation, including cluster merging and elimination.

As a difference with the last implementation in [11], cluster merging and elimination is carried out in each
iteration of the EM algorithm. This might give the impression that it is more computationally expensive than
if performed after the EM has finished, but in fact it proves to speed up the processing. The reason is that
usually, and especially when a large number of new clusters have been detected in the first step of the
algorithm, a great deal of the clusters either merge or are eliminated in the first iterations of the EM adjust,
so that the rest of the iterations are performed more quickly. Also, the final EM fine-tuning in the case of
cluster splitting is avoided.

Another difference is that in this implementation, cluster splitting is not considered. It has been found that,
at least in the image sequences employed in the tests, old clusters naturally split when new clusters are
detected in the new frame, and the corresponding objects are far enough.

Updating of the reference image and background cluster parameters.

This last step of the algorithm is maintained as in [9-11] and therefore, equations (7.11) and (7.12) are
used for the update.

7.4. EXPERIMENTAL RESULTS

The proposed modification has been implemented both in Matlab and C++ as a standalone application. It
is also currently in the process of being integrated into the AvitrackFrameTracker application [14].

Several tests were carried out using image sequences from the PETS database and from the AVITRACK
project. The algorithm showed a good performance, although it is very sensitive to some of the
parameters, like the minimum thresholds used for cluster merging and elimination.

Also, in this stage it is not able of dealing with extreme changes of illumination, and in the tracking there
appear some broken trajectories due to failures in identity preservation when two clusters are merged.
However, this is not a serious drawback, as this algorithm is supposed to be the lowest layer of tracking,
and therefore the identity preservation and tracking coherence must be performed by higher-level
processes.

7.5. CONCLUSIONS

In this work, a new implementation of the algorithm described in [9-11] has been detailed and tested. This
implementation includes some changes that make the algorithm faster while maintaining its properties and
performance.

The tests have shown that the algorithm is able of making reasonable tracking without carrying out object
recognition. However, to avoid losing the coherence of the tracking when moving objects overlap, the use
of some higher-level algorithms which process the outputs of the tracker is required.

Internal Technical note
Tracking Report

Vers : 1.0 - Draft 2

Ref : IN_AVI_2_011

Date : 30-Nov-2004

Contract : AST3-CT-2003-502818

© AVITRACK Consortium – AVITRACK Restricted 31/45

8. CONFIGURATION PARAMETERS

Table 8.1 below lists the parameters that need to be configured for each of the tracking algorithms.

Algorithm Parameter Description Value
used

WINDOW_SIZE Determines the size of the local feature
window.

5x5

FEATURE_DENSITY Used to determine the maximum number
of features that are selected and tracked
per object. This density value is used
together with the object’s area and the
WINDOW_SIZE parameter.

0.2

MIN_FEATURES_PER_OBJECT Places a lower limit on the number of
features per object.

20

MAX_FEATURES_PER_OBJECT Places a maximum limit on the number of
features per object.

50

MAX_ITERATIONS The maximum of iterations that are
performed when tracking a local feature,
before setting the tracking state of the
feature to ‘lost’.

10

MAX_RESIDUE The maximum residue amount that is
allowed before setting the tracking state
of the feature to ‘lost’.

10

NEW_REGION_AREA_MATCH_THRESHOLD A threshold on the maximum area
difference allowed when trying to recover
lost objects.

60

MAX_OBJECTS The maximum number of objects that can
be tracked at any one time. Used in the
allocation of program data structures.

500

STATIC_COUNT_INCORPORATE If an object is stationary for this number of
frames, then it is added to the
background model of the Motion
Detector.

6

STATIC_OBJECT_REACTIVATION_MOTION_RATIO When checking if an object is stationary
or not, if the area of motion within the
object over the object’s full area is less
than this value, then the object is
considered to be stationary.

0.25

Local Feature
Tracker

MAX_KEEP_ALIVE If an object is lost during tracking, it is
maintained for this number of frames to
try and recover it, before deleting it.

32

Internal Technical note
Tracking Report

Vers : 1.0 - Draft 2

Ref : IN_AVI_2_011

Date : 30-Nov-2004

Contract : AST3-CT-2003-502818

© AVITRACK Consortium – AVITRACK Restricted 32/45

NUM_HUE_BINS Number of bins allocated to the hue
colour component in the object’s colour
histogram.

32

NUM_SATURATION_BINS Number of bins allocated to the saturation
colour component in the object’s colour
histogram.

32

NUM_VALUE_BINS Number of bins allocated to the value
brightness component in the object’s
colour histogram.

32

MAX_SEARCH_DISTANCE The maximum spatial distance used in
tracking an object from one frame to the
next. Expressed as a ratio of the image
width.

0.05

COLOUR_SIMILARITY_THRESHOLD The lower threshold used for determining
colour similarity when using the
Bhattacharrya coefficient.

0.2

MAX_OBJECTS See previous algorithm. 500

STATIC_COUNT_INCORPORATE See previous algorithm. 6

STATIC_OBJECT_REACTIVATION_MOTION_RATIO See previous algorithm. 0.25

Colour based
Tracker

MAX_KEEP_ALIVE See previous algorithm. 32

N_MAX_ITERATIONS Maximum number of iterations for the EM
algorithm.

30

MIN_CENTROID_CHANGE Minimum change on the centroids of the
clusters to keep on iterating with the EM
algorithm.

0.1

MIXING_FACTOR If this factor is increased, clusters will not
merge easily.

0.0

ALPHA_M Minimum Mahanalobis distance for
cluster merging (in pixels).

10

T_r Inverse of the velocity of change for the
background (in number of frames).

1

Cluster Tracker

MIN_DENSITY_FOR_ELIMINATION Minimum value of the density operator to
eliminate a cluster by merging it with the
background.

12

9. PERFORMANCE

Table 9.1 below lists the processing speeds for the algorithms, when tested on sequence S3-A320-CAM2.
These measurements reflect the speed of the algorithms at the current time – further optimisations will be
implemented in the near future.

Algorithm Max Min Average

Local Feature Tracker 33 ms (30.0 fps) 417 ms (2.4 fps) 91 ms (10.9 fps)

Colour Tracker 28 ms (35.7 fps) 263 ms (3.8 fps) 83 ms (12.0 fps)

Cluster Tracker

Internal Technical note
Tracking Report

Vers : 1.0 - Draft 2

Ref : IN_AVI_2_011

Date : 30-Nov-2004

Contract : AST3-CT-2003-502818

© AVITRACK Consortium – AVITRACK Restricted 33/45

10. SOME RESULTS

The following pages show a sample of the tracking results obtained from the 3 tracking algorithms

described in this document when run against a part of the AVITRACK sequence S3-A320-CAM2, from

frame 300 to 3350. This is only intended to give an approximate idea of how the trackers perform at

present. A more formal evaluation, using ground-truth information and pre-defined evaluation criteria, is to

be undertaken in the near future, as part of “Work Package 6.1 – Scene Tracking Evaluation” [1]. The

figures on the following pages are depicted in a ‘film-strip’ format, showing the results for frames 300 to

3350, every 50. The range of frames 650 to 1100 have been skipped, since no action occurs within this

period of time (after the aircraft has stopped moving and just before the servicing operation begins).

In the results of the Local Feature Tracker and the Colour Tracker, tracked objects are shown enclosed by

their bounding boxes. A solid bounding box indicates a moving object, while a dashed bounding box

indicates a stationary object that has been integrated into the background. Each object being tracked from

one frame to the next is assigned a unique identity number. This number is displayed just beneath the

lower edge of the bounding box – this might be too small to be visible in the images shown on the following

pages. Alternatively, one can follow the colour of the bounding boxes – each object is assigned a colour

(from a pool of 16 pre-defined colours) that remains fixed throughout its lifetime.

As mentioned in §2, the Cluster Tracker is currently running as a standalone application and has not yet

been fully integrated into the AvitrackFrameTracker module. Hence, the format used for displaying the

results is different than that of the other two. Tracked objects are indicated by an ellipsoid that indicates the

limits of the top hat distribution used to model that object.

10.1. RESULTS – LOCAL FEATURE TRACKER

Some object fragmentation occurs for the aircraft (see result image 2) when the wing first comes into view

(enters the detection region). The aircraft becomes stationary in image 4 and is integrated into the

background – this allows new objects appearing in front of the aircraft to be detected and tracked (the

person in image 5). The bounding box of the aircraft is not shown after image 10. In image 15, the shadow

cast by the opened aircraft door (shown in green) is mistakenly detected as a new object (white object). In

image 20, the person (shown in yellow) is eventually lost when it becomes partially occluded by the vehicle

(cyan) – the object becomes too small in size and it becomes no longer possible to replace lost features.

This person is reacquired as a new object in image 26 (shown in red). In images 35 to 36, the scene

becomes cluttered and persons leaving the 2 vehicles (blue and cyan) are too close to each other to be

tracked successfully. In image 36, note how the KLT algorithm manages to successfully find and track one

or two features in the cone left on the apron (violet colour), even though this presents a very small area

when viewed by camera 2. But the object is eventually lost in image 38, when the vehicle (large blue

object) passes behind the cone – the shadow cast by the vehicle on the cone results in a large change in

illumination of the cone’s area and causes the loss of the features. In image 40, a stationary vehicle (blue

object in image 36) starts moving at the same time that another vehicle is passing in front of it – the

stationary object is successfully re-activated, but its ID is lost just after and it is detected as a new object

(green vehicle in image 40).

Internal Technical note
Tracking Report

Vers : 1.0 - Draft 2

Ref : IN_AVI_2_011

Date : 30-Nov-2004

Contract : AST3-CT-2003-502818

© AVITRACK Consortium – AVITRACK Restricted 34/45

LOCAL FEATURE TRACKER Frames 300–1800

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

Internal Technical note
Tracking Report

Vers : 1.0 - Draft 2

Ref : IN_AVI_2_011

Date : 30-Nov-2004

Contract : AST3-CT-2003-502818

© AVITRACK Consortium – AVITRACK Restricted 35/45

LOCAL FEATURE TRACKER Frames 1850–2550

16 17 18

19 20 21

22 23 24

25 26 27

28 29 30

Internal Technical note
Tracking Report

Vers : 1.0 - Draft 2

Ref : IN_AVI_2_011

Date : 30-Nov-2004

Contract : AST3-CT-2003-502818

© AVITRACK Consortium – AVITRACK Restricted 36/45

LOCAL FEATURE TRACKER Frames 2600–3350

31 32 33

34 35 36

37 38 39

40 41 42

43 44 45

Internal Technical note
Tracking Report

Vers : 1.0 - Draft 2

Ref : IN_AVI_2_011

Date : 30-Nov-2004

Contract : AST3-CT-2003-502818

© AVITRACK Consortium – AVITRACK Restricted 37/45

10.2. RESULTS – COLOUR TRACKER

The Colour Tracker suffers from the same fragmentation of the wing when the aircraft enters the camera’s
detection area (result image 2), similar to the Feature Tracker, as both are using the same motion
detection algorithm as their input. But the behaviour of the Colour Tracker is worse under fragmentation,
because normally the fragments have the same (or very similar) colour models and they tend to migrate
towards the object’s centre. The fragment in image 2 (shown in cyan), migrates towards the aircraft’s
centre and is absorbed by the larger fragment (yellow). The Colour Tracker is also susceptible to
illumination changes – the use of the HSV colour space mitigates this to some extent. For example, the
person shown in image 18 (red) is lost when it moves into the shadow area cast by the aircraft’s wing, and
is detected as a new object in image 19 (shown in green). Notice also how in image 20, part of the vehicle
(violet) appears from behind the aircraft’s wing, as the conveyor belt is elevated. This part is assigned to
the object representing the aircraft door (blue), rather than to the vehicle object. Both object have little
colour and their brightness histogram is very similar, so creating an error in the tracking results. Similarly,
the vehicle in image 26 (shown in cyan) is lost when it approaches a vehicle of a similar colour model
(violet) and it gets ‘absorbed’ by the other vehicle. This problem re-occurs in later frames – in image 38,
the vehicle shown in blue is lost and is absorbed by the vehicle in violet; in image 40, and finally in image
42, where several vehicles of the same colour are identified as one large object by the Colour Tracker.

10.3. RESULTS – CLUSTER TRACKER

As stated in §7.4, the Cluster Tracking algorithm can be used as a low-level frame-to-frame tracker and
other high level processes are required for maintaining the identity of objects when they become merged or
occluded. Because of its probabilistic nature, this algorithm does not suffer from the fragmentation problem
described for the previous two trackers. The aircraft is detected as one object in result images 1 to 3. It is
then integrated into the background in image 4, so allowing new objects to be detected (the person in
image 5). This tracker loses objects when they are affected by illumination changes – for example, the
person shown in image14 is lost when it passes through the shadow cast by the aircraft’s wing in image
15. Also, object identity is lost, when two or more objects become merged or partially occlude each other –
see result images 17 to 18, for example. The cluster representing the merged objects eventually separates
into two or more clusters when the separation between the objects reaches a certain threshold – for
example, the vehicle and person in images 27 and 28.

Internal Technical note
Tracking Report

Vers : 1.0 - Draft 2

Ref : IN_AVI_2_011

Date : 30-Nov-2004

Contract : AST3-CT-2003-502818

© AVITRACK Consortium – AVITRACK Restricted 38/45

COLOUR TRACKER Frames 300–1800

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

Internal Technical note
Tracking Report

Vers : 1.0 - Draft 2

Ref : IN_AVI_2_011

Date : 30-Nov-2004

Contract : AST3-CT-2003-502818

© AVITRACK Consortium – AVITRACK Restricted 39/45

COLOUR TRACKER Frames 1850–2550

16 17 18

19 20 21

22 23 24

25 26 27

28 29 30

Internal Technical note
Tracking Report

Vers : 1.0 - Draft 2

Ref : IN_AVI_2_011

Date : 30-Nov-2004

Contract : AST3-CT-2003-502818

© AVITRACK Consortium – AVITRACK Restricted 40/45

COLOUR TRACKER Frames 2600–3350

31 32 33

34 35 36

37 38 39

40 41 42

43 44 45

Internal Technical note
Tracking Report

Vers : 1.0 - Draft 2

Ref : IN_AVI_2_011

Date : 30-Nov-2004

Contract : AST3-CT-2003-502818

© AVITRACK Consortium – AVITRACK Restricted 41/45

CLUSTER TRACKER Frames 300–1800

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

Internal Technical note
Tracking Report

Vers : 1.0 - Draft 2

Ref : IN_AVI_2_011

Date : 30-Nov-2004

Contract : AST3-CT-2003-502818

© AVITRACK Consortium – AVITRACK Restricted 42/45

CLUSTER TRACKER Frames 1850–2550

16 17 18

19 20 21

22 23 24

25 26 27

28 29 30

Internal Technical note
Tracking Report

Vers : 1.0 - Draft 2

Ref : IN_AVI_2_011

Date : 30-Nov-2004

Contract : AST3-CT-2003-502818

© AVITRACK Consortium – AVITRACK Restricted 43/45

CLUSTER TRACKER Frames 2600–3050

31 32 33

34 35 36

37 38 39

40

Internal Technical note
Tracking Report

Vers : 1.0 - Draft 2

Ref : IN_AVI_2_011

Date : 30-Nov-2004

Contract : AST3-CT-2003-502818

© AVITRACK Consortium – AVITRACK Restricted 44/45

11. CONCLUSION

Three tracking algorithms have been implemented and tested using AVITRACK data sets. From initial
evaluation, both the Local Feature Tracker and the Cluster Tracker give good tracking results.

The Local Feature Tracker can suffer from loss of object identity if the local features are lost during merged
or occluded states and cannot be replenished fast enough. It also requires objects to be textured in order
for good features to be selected.

The Cluster Tracker can lose object identity when clusters merge together, hence requiring a higher-level
algorithm to preserve identities. The algorithm is also not able to deal with extreme illumination changes.

The Colour Tracker performs quite badly and generates a lot of tracking errors. The main reason for this is
due to the lack of colour information in most of the objects being tracked in the AVITRACK sequences and
also most of the objects have similar brightness distributions. A lot of issues were identified with this
tracker and further work need to be done to improve its results.

12. FUTURE WORK

The following are some issues or approaches that will be addressed in future tracking work done for the

AVITRACK project:

x Shadows are still a major issue, resulting in incorrect object positions being reported. Several

attempts have been made to remove shadows. Some new techniques such as multi-view shadow

elimination will be investigated in the future.

x The use of occlusion information by background elements and objects themselves can help to

improve the tracking results. This is currently being studied.

x The use of feedback from data fusion may be investigated.

x The use of high-level scene context information may help to resolve certain tracking errors /

failures.

Internal Technical note
Tracking Report

Vers : 1.0 - Draft 2

Ref : IN_AVI_2_011

Date : 30-Nov-2004

Contract : AST3-CT-2003-502818

© AVITRACK Consortium – AVITRACK Restricted 45/45

REFERENCES

[1] “AVITRACK Technical Annex 1”, AST3-CT-3002-502818.

[2] Shi J., and Tomasi C., “Good Features to Track”. In Proc. of IEEE Conference on Computer
Vision and Pattern Recognition, pp 593-600, 1994.

[3] Birchfield S., “Derivation of Kanade-Lucas-Tomasi Tracking Equation”. Unpubl. Available at
http://www.vision.stanford.edu/~birch/klt.

[4] “Deliverable D3.1 - Motion Detection”. AVITRACK, DL_AVI_2_006, Sept 2004.

[5] Thacker N.A., Prendergast D., and Rockett P.I., “B-Fitting: An Estimation Technique With
Automatic Parameter Selection”. In Proc. British Machine Vision Conference (BMVC’96),
Edinburgh, vol. 1, pp. 283-292, 1996.

[6] Aherne F.J., Thacker N.A., and Rockett, P.I., “The Bhattacharyya Metric as an Absolute Similarity
Measure for Frequency Coded Data”. Kybernetika, vol. 32, no. 4, pp. 1-7, 1997.

[7] Comaniciu D., Ramesh V., and Meer P., “Real-Time Tracking of Non-Rigid Objects Using Mean
Shift”. In IEEE CVPR, pp. 142-151, 2000.

[8] Bradski G., “Computer Vision Face Tracking For Use in a Perceptual User Interface”. In Intel
Technology Journal, Q2, 1998.

[9] Pece E.C., “Tracking by cluster analysis of image differences”. In PETS 2000, pp. 295-303, 2000.

[10] Pece E.C., “Tracking of non-Gaussian clusters in the PETS2001 image sequences”. In PETS
2001.

[11] Pece E.C., “From cluster tracking to people counting”. In PETS 2002, pp. 9-17, 2002.

[12] Darrell T., and Pentland A.P., “Cooperative robust estimation using layers of support”. In IEEE
Trans. P.A.M.I. 17(5): 474-487, 1991.

[13] McLachlan G.J., and Krishnan T., “The EM Algorithm and Extensions”. Wiley: New York 1997.

[14] “Software Delivery Report – AvitrackFrameTracker v0_3”. AVITRACK, SD_AVI_2_009, Oct 2004.

[15] Sonka M., Hlavac V., and Boyle R., “Image Processing, Analysis and Machine Vision”. Chapman
& Hall, London, UK, 1993.

[16] Forsyth D., and Ponce J., “Computer Vision: A Modern Approach”. Prentice Hall, NJ, USA, 2002.

http://www.vision.stanford.edu/~birch/klt

	INTRODUCTION
	SYSTEM OVERVIEW
	TRACKING – AN OVERVIEW
	THE TRACKING ALGORITHMS
	LOCAL FEATURE TRACKER
	THE KLT ALGORITHM
	FROM FEATURES TO OBJECTS
	THE OBJECT TRACKING ALGORITHM
	GENERATE OBJECT PREDICTIONS
	RUN THE KLT ALGORITHM
	MATCH PREDICTIONS TO MEASUREMENTS
	HANDLE NEW AND LOST OBJECTS
	UPDATE OBJECT STATE

	EXPERIMENTAL RESULTS
	CONCLUSIONS

	COLOUR TRACKER
	THE OBJECT COLOUR MODEL
	THE BHATTACHARYYA COEFFICIENT
	THE CAMSHIFT ALGORITHM
	THE OBJECT TRACKING ALGORITHM
	GENERATE OBJECT PREDICTIONS
	BUILD COLOUR MODELS
	MATCH PREDICTIONS TO MEASUREMENTS
	HANDLE NEW AND LOST OBJECTS

	EXPERIMENTAL RESULTS
	CONCLUSIONS

	CLUSTER TRACKER
	DESCRIPTION OF THE ORIGINAL ALGORITHM
	THE CLUSTER TRACKING ALGORITHM
	THE NEW IMPLEMENTATION
	EXPERIMENTAL RESULTS
	CONCLUSIONS

	CONFIGURATION PARAMETERS
	PERFORMANCE
	SOME RESULTS
	RESULTS – LOCAL FEATURE TRACKER
	RESULTS – COLOUR TRACKER
	RESULTS – CLUSTER TRACKER

	CONCLUSION
	FUTURE WORK
	REFERENCES

