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  INTRODUCTION

This document describes the work performed so far on Data Fusion for the AVITRACK project. This work 
forms part of work packages D3.2 and D3.6.  

The  next  section  (Section  2),  gives  a  brief  overview  of  Data  Fusion  and  introduces  the  general 
characteristics of Multi-Camera Tracking Systems that directly influence the data fusion process, together 
with issues and problems that need to be addressed. Section 3 will  then briefly describe how existing 
systems in the literature go about to solve the data fusion problem.  Section 4 will then introduce the work 
performed for AVITRACK, describe the 3D localisation issues, sensor uncertainty, the different algorithms 
used for data association, data fusion, track estimations and update rules, and filtering.

SYSTEM OVERVIEW

The data association, fusion and tracking algorithms presented in this document form part of the “Data 
Fusion” module, which is responsible for performing tracking using the measurements made from all the 
cameras. This module is used to process XML streams from 8 cameras concurrently. The tracking results 
of each camera are then sent in XML via CORBA communications to the “Long Term Tracking / Scene 
Understanding” modules.

The main architecture and algorithms for data fusion have been incorporated into the third delivery of the 
Data Fusion module, called AvitrackDataFusion v0.3 [?].  The unresolved tasks for data fusion are to make 
the data association probabilisitic,  to  add more in-depth  reasoning about  the splitting  and merging of 
tracks, and also to incorporate feedback into the frame to frame tracker to improve the coherency of the 
output (by ensuring unique per-object labels at all stages of the tracking process).

The tracking algorithms were mostly tested with the following AVITRACK data sequences: S3-A320, S21-
Vehicles and S4-A320, some results of which are presented in this document. A more formal evaluation, 
using ground-truth information and pre-defined evaluation criteria, will be done in the near future, as part of 
“Work Package 6.1 – Scene Tracking Evaluation”.

  MULTI-CAMERA SYSTEMS AND DATA FUSION – OVERVIEW & ISSUES

The main advantages of using a multi-camera tracking system, like in AVITRACK, is:

• Occlusion Minimisation. If a target becomes occluded in a camera view (by another target or scene 
elements),  there is  a  higher  probability  of  observing  the  same target  with  a  different  camera 
viewpoint, in which it is not occluded.

• A larger Visible Area. This consists of the combined area (network field-of-view) observed by all 
the cameras from their respective viewpoints. This results in targets being potentially observed for 
a longer period of time over a wider area.

• Better  3D  positions.  A more  accurate  and  reliable  3D  position  can  be  computed  for  targets 
observed by multiple cameras.

The  Data Fusion process combines the data seen by each of the individual cameras to maximise the 
useful  information  content  of  the  scene  being  observed  and  hence  achieving  the  above-mentioned 
advantages over single-camera systems. Data fusion also helps to minimise the volume of data generated 
by the many cameras and helps to reduce the bandwidth needed to send information to later processing 
modules.

Multi-camera architectures normally fall into 2 main categories:
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• Cameras with overlapping fields-of-view (FOV). Targets can be potentially seen simultaneously by 
2 or more cameras. 

• Cameras with  non-overlapping fields-of-view.  A target  exiting one camera’s  FOV, can later  be 
observed in another.

The main issue for data fusion in the overlapping FOV case is to do the matching of targets observed 
simultaneously by multiple cameras – this is referred to as the  Data Association problem. For the non-
overlapping case, targets that exit the FOV of one camera and then enter the FOV of a second camera, 
need to be re-acquired – the so-called Camera Hand-Off problem. The AVITRACK system falls into the first 
category.

The data fusion process also depends on where the tracking module(s) is/are placed in the system. This 
can be configured as a [2]:

• Centralised Tracking system. Tracking is done immediately in 3D for all cameras concurrently.

• Decentralised Tracking system. Each camera does its own tracking independently using the image 
data (in 2D), and then sends its tracking results to the data fusion module.

• Hierarchical Hybrid system. 

AVITRACK, like most existing systems, uses decentralised tracking. These can be further sub-divided into 
those that use  feedback from the data fusion module to the individual camera trackers, and those that 
don’t. It is also possible for feedback to occur between the camera trackers themselves. At the moment, it 
is not envisaged that feedback will be used for AVITRACK.

The type of  spatial  registration of  camera image frames,  also plays an important  role  in  data fusion. 
Several methods are available, such as: using calibrated cameras, homography relations between 2 or 
more cameras, epipolar lines, uncalibrated cameras and FOV edge visibility, etc.

Another  important  issue  for  the  data  fusion  process  is  whether  the  video  output  from  the  individual 
cameras  is  synchronised  or  not.  This  is  especially  important  for  decentralised  systems,  where  each 
camera operates as an independent  process.  This  can give rise to temporal  drift  between the image 
frames acquired by each camera,  which will  affect  the fusion accuracy.  To solve this,  the data fusion 
module must either use methods that can handle non-synchronised tracking results or perform temporal 
registration of the tracking data. 

In the case of AVITRACK, the cameras should be synchronised by the video server, but from an initial 
examination it appears that there might be a slight synchronisation problem. This is under investigation, 
but if present, will require awareness of the problem at data fusion level.

  LITERATURE REVIEW

This section gives a brief review of some of the data fusion methods that are mentioned in the computer 
vision literature (listed in no particular order). 

1. The system developed by Remagnino, Shihab and Jones [1], is a decentralised (see section 2) multi-
camera system, with the software architecture of the system composed of agents (The use of software 
agents is the main focus of this paper). Each camera’s tracker runs independently and it uses the 
camera’s calibration information (which is learnt  automatically from the scene), to map the image 
coordinates of tracked targets onto the 3D ground plane. 
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Data fusion occurs in a distributed fashion by the software agents created for each tracked object, 
which communicate with each other. Two tracked objects from different cameras match with each 
other if they have similar trajectories on the 3D ground plane. If the distance between the past  N 
positions making up the 2 trajectories is less than some pre-defined threshold T, then the two objects 
are fused together. This paper uses the last 5 seconds of positions for trajectory comparison. This is a 
simple data association technique, but is effective, although it suffers from problems and is limited to 
handling the fusion of 2 objects at a time.

2. Much of the work on data fusion in computer vision is based on extensive work done previously in the 
radar-tracking  domain.  Several  data  fusion  methods  used  in  radar  tracking  have  been  applied 
successfully  to  computer  vision  applications.  Bar-Shalom and  Li  [2],  introduce  several  statistical 
techniques for data association. These are:

• Nearest Neighbour Filter.

This is the simplest data association method, where a tracked object from one camera is fused 
with the nearest neighbour from another camera (as determined from the 3D positions of the 
objects). A variation of this technique uses the strongest neighbour instead of the nearest one. 
This method suffers from problems when objects are too close to each other, cluttered scenes 
and when the tracking results are affected by measurement and detection errors (noise).

• Joint Probabilistic Data Association Filter (JPDAF).

The  JPDAF method  is  more  robust  to  3D position  and  detection  errors.  It  calculates  the 
association probabilities for each detected object at the current time (measurements) with the 
known targets (tracked in previous frames), taking into account the potential presence of noisy 
measurements. These probabilities are then used to compute weighted measurements, and 
used to  update the known targets.  Because  of  this,  the  JPDAF is  referred to  as  the  “all 
neighbours” filter [2]. JPDAF performs quite well in the presence of scene clutter and when 
targets approach and pass each other. 

• Multiple Hypothesis Tracking (MHT).

The MHT data association method considers all possible combinations of matches between 
the previous targets and the current measurements as detected by the cameras. These are 
arranged in a tree-like structure of hypothesis, and includes all possible new target initiations 
(i.e. targets that enter/appear in the scene for the first time). The MHT method performs quite 
well in tracking a large number of simultaneous targets, even if the correct association is not 
immediately made (example when targets are not visually separated). 

3. The work by Ruan [3], describes 2 other data association techniques:

• Probabilistic Multiple Hypothesis Tracking (PMHT).

This is a generalisation of the MHT method [2], that eliminates the assumption that a target 
can generate only one measurement (observation). This is useful for cases where an object 
gets fragmented when seen by one of the cameras. 

• S-D Assignment.

The  S-Dimensional  Assignment  method  considers  the  data  fusion  problem  as  a  multi-
dimensional  matching problem,  and a  subset  of  all  feasible measurement  to  known-target 
associations is found by minimising a cost function.
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4. All the data association methods reviewed so far are based on fusing ‘point targets’, where tracked 
objects are represented as a single 3D point (usually set to the object’s 3D centroid or object’s 3D 
ground position). This is especially true of methods originating from work done in the radar domain. 
But vision-based tracking applications track extended objects and so other cues, apart from the 3D 
position, can be used during fusion. These cues can also be integrated together to get a better result. 
The object features selected as cues must be insensitive to the camera viewpoint to be useful for data 
fusion.

The work by Collins et al. (VSAM project), [4] and [5], uses a combination of colour information, 3D 
position  and  coarse  object  classification  to  aid  data  fusion.  Their  application  consists  of  a 
decentralised multi-camera system made up of different sensor types, including mobile and airborne 
cameras. In this project, data fusion is mainly used for solving the camera hand-off problem and for 
sensor slaving (a wide FOV camera controlling pan-tilt-zoom cameras).

The 3D positions of tracked objects are computed by geolocation – intersecting viewing rays from a 
camera with a non-planar ground terrain model. Together with the 3D position, a variance measure is 
also calculated. This is determined from variation in the image coordinates of the tracked object over a 
period of time. The object’s colour information consists of 3 coarse R, G, and B histograms. The 
histograms are normalised to handle different colour responses in the cameras. The classification 
information consists of the classes: person, group of persons, and vehicles.

During data association, 3 match score functions are calculated for all potential measurements and 
hypotheses pairs (previously tracked objects). The 3D position score uses the distance between the 
predicted position of the hypothesis (using a simple constant velocity value) and the measurement’s 
ground position together with the covariance value. The classification match score uses heuristics and 
pre-defined constants, while the colour match score uses a simple colour histogram difference. The 3 
scores are then combined into a single  value and the best  pair  is  selected (strongest  neighbour 
approach), if  it  is above a certain score threshold. If no match is found, then the measurement is 
assumed to be a new target.

5. The work by Turolla, Marchesotti and Regazzoni [6], uses a similar approach to the previous one. This 
paper also mentions that for extended targets, data association can occur at different levels: pixel 
level (colour), blob/object level (shape, corners) and event level (dynamics). 

In  their  implementation,  the object  features used as cues for  the data fusion process are:  target 
speed,  3D position  and colour  histogram.  The  speed is  estimated using  a median  filter,  while  a 
Kalman filter is used for estimating the 3D position. During data fusion, the Euclidean distance metric 
is used for the 3D position, the Bhattacharyya coefficient is used to compare the colour histograms, 
while a vector metric is used for speed. The values are then thresholded and pre-defined association 
rules (‘and’, ‘or’, ‘majority’ rules) are used to select the best match.

6. In the previous two works, several target features were used as cues for data fusion and their related 
scores were integrated using score addition or association rules. One problem with combining scores 
in a linear way is that a poor feature score can degrade the scores of the other features (example, 
colour can become unreliable when a target moves from an illuminated to a shadow region), and data 
fusion may fail during these instances.

To solve this problem, Hsu et al. [7], introduces a new data association method called Rank And Fuse 
(RAF). During the rank stage, all possible matches of measurements to hypotheses are enumerated 
and for each feature, a score is calculated using a similarity metric. Then during the fusion stage, all 
the rankings are combined together using rank correlation and rank combination. 

In  their  implementation,  the object  features selected for  data  fusion  are  the 3D position and the 
average colour. Their RAF system performs better than using a score combination method.
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7. Nummiaro et al. [8], use a multi-camera system for a smart room application. In this system, data 
fusion is used for selecting the best view of people as they are tracked by multiple cameras in the 
room.  Each  camera  has  its  own  tracking  module  running  on  its  own,  but  the  trackers  can  also 
communicate with each other to exchange tracking results and to re-acquire targets if these are lost 
due to occlusion, clutter or when they leave the camera’s FOV. The first part of data fusion is done at 
this stage.

When cameras exchange tracking results, they use their epipolar geometry to determine where lost 
objects should be re-acquired or new objects should be seen. If a target is only seen in one camera, 
then it is searched in other camera views by taking samples along the single epipolar line. If seen in 
more than one camera, then it is searched in the remaining cameras by taking samples near the 
intersection of the multiple epipolar lines. To determine the correct association between targets seen 
in different cameras, the target’s colour histogram is used together with the Bhattacharyya coefficient 
as the similarity metric. The same feature and metric is also during the selection of the best view for 
the tracked object.  This  system suffers  from incorrect  matches  if  there are  several  equally  good 
candidates in the vicinity of epipolar lines (crowded scenes).

8. The system by Mittal and Davis [9], consists of a centralised and synchronised multi-camera system. 
Like the previous work, epipolar geometry is used for the data fusion process, which is done on pairs 
of cameras at a time. In this system, data fusion is performed at an early stage and before any target 
tracking occurs and uses low-level information.

Motion regions of constant colour in one camera view are matched along the epipolar line with similar-
coloured motion regions in the second camera view. The midpoints of the matched regions are then 
mapped to 3D points using calibration information and projected on to the ground plane. A Gaussian 
kernel is then used to add a probability value to a ground-plane probability map. This map is used to 
indicate the probability of the presence of an object at that point on the ground plane. If during fusion, 
a region in one camera matches with many regions of the same colour in the second camera view, 
then all are considered as potential matches and added to the probability map. The probability map is 
then thresholded and objects detected and tracked on the 3D ground plane.

This  system performs quite  well  in  crowded scenes and  the accumulation of  probabilities  in  the 
probability map helps to reject outliers.

9. Snidaro et al. [10], use a decentralised multi-camera system for outdoor surveillance. For data fusion, 
they use a technique they call “measurement gating and assignment” (the term gate is borrowed from 
the radar domain and refers to that part of the multidimensional data space around the measurement 
in which a search is made). Given the known targets (known from previous frames), the data fusion 
process will compare each measurement with the predicted 3D position of the known targets. Only 
those measurements which fall within the gating distance of the predicted position are considered for 
fusion. The gating distance is derived from the normalised (Mahalanobis) distance and the predicted 
state of the target.

Because of the variability in weather conditions in outdoor environments, this paper also introduces an 
Appearance Ratio  metric  that  dynamically  measures sensor  reliability.  The camera closest  to the 
target may not always be the best sensor under adverse weather conditions (example, fog) and the 
appearance ratio is higher for cameras in which the target has a stronger visibility. Then, during data 
fusion, the final matching score is calculated from a combination of the gating distance metric and the 
appearance ratio. The measurement with the best score is fused with the target.
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10.  Most  of  the  reviews  so  far,  have  either  used  synchronised  camera  systems  or  else  assumed 
synchronisation. But, as mentioned in section 2, a temporal drift can occur between cameras running 
independently.  For  fast  moving  targets,  such  as  vehicles,  this  temporal  drift  can  create  large 
differences in 3D positions of the target as seen by different cameras and may cause problems for 
data fusion. Ohya, Utsumi, and Yamato [11 chapt.2], describe how multiple measurements from non-
synchronous cameras can be integrated together by using a Kalman Filter algorithm. Their system is 
used to track multiple persons.

Each camera has its own processing module, which the authors call the Observation Node. It detects 
feature points for the persons it observes – these are the points with highest value after the distance 
transform is applied to the binary motion image. Then it matches these feature points, against the 
tracking models of already known targets, using the Mahalanobis distance. This data association is 
done in a decentralised fashion by the observation nodes.

After matching, the measurements from the different cameras and with different timestamps are sent 
to a central tracking module, which feeds the measurements for a particular target to its Kalman filter, 
and the Kalman filter  in  turn updates its  tracking state.  The Kalman filter will  then generate new 
predicted positions to be used in the next matching step and sends these to the observation nodes.

Amongst the advantages of using non-synchronous cameras, quoted by the authors, one can find: no 
need for mechanisms for synchronising the cameras; the multi-camera system is more scalable; and 
each camera can run at its own processing rate unhindered by the other cameras.

11.  The system by  Black,  Ellis  and Rosin  [12]  and Ellis  et  al.  [13],  is  also using non-synchronised 
cameras. But the authors use a temporal alignment technique to actually register the frames from the 
cameras. This needs to be performed only once at the beginning and uses a least median of squares 
method to geometrically align object tracks and generate a time offset for pairs of cameras.

For tracking objects, a 2-level Kalman filter-based tracking is used. Objects are first  tracked by a 
Kalman filter  in  2D image coordinates with  the object  state consisting of  the image position and 
velocity. The minimum Mahalanobis distance between the 2D Kalman prediction and the observed 
position are used to match the observations with the known targets for that particular camera. The 3D 
position is then estimated from the 2D Kalman state by using the ground plane constraint and the 
camera calibration information. The second level Kalman filter tracks objects in 3D and performs the 
data fusion step,  by combining all  the 3D positions for a certain target reported by each camera 
tracker. 

This system also describes a method for estimating the 3D measurement uncertainty by combining 
the uncertainty of the camera calibration (higher error, the farther away from the camera) and the 
tracked 2D object states. This uncertainty is expressed as a 2D image covariance and is projected on 
to the ground plane to get the 3D uncertainty.

12.  The multi-camera system by Jiao et al. [14] uses a similar approach to the previous system, with a 2-
level Kalman filters for tracking and data fusion and it also makes use of non-synchronous cameras. 
Temporal  registration is  performed by observing a 3D trajectory,  an invariant  signature of the 3D 
trajectory is determined from its 2D projections, followed by correlating these invariant trajectories 
from the different cameras. 

The lower-level 2D Kalman filter takes the image trajectory as the observation and uses the image 
positions, velocity and acceleration, expressed in the local camera reference frame, as the object 
state. Then the top-level 3D Kalman filter receives the image positions, velocity and acceleration from 
the individual 2D Kalman filters as its input and fuses the data to get the 3D state of the tracked 
object. 
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A feedback mechanism is included so that the top-level module (the one doing the data fusion) sends 
fused data back to the lower-level camera trackers. This feedback is used to handle cases where 
individual camera trackers lose track of objects when they are occluded or out of the camera’s FOV. 
And on top of the 2D Kalman filters, a layer of multiple hypotheses verification is added to handle 
these lost/occluded cases that  normally cause the 2D Kalman filter  to fail.  The last  known fused 
position (received from the feedback from the 3D Kalman) is then used and backprojected on to the 
image to try and re-acquire the object.

13.  Dockstader and Murat Tekalp [15] also use a 2-level Kalman Filter system, but with the addition of a 
Bayesian Belief Network which does the actual data fusion. The low-level camera trackers use sparse 
feature points and their corresponding motion estimate and track these points using 2D Kalman filters. 
The output of these trackers is then sent to the data fusion module, which consists of the Bayesian 
belief network, and on top of it, a 3D Kalman filter. 

The Bayesian belief network uses a probabilistic weighting scheme for data association and fusion. It 
fuses  independent  observations  from  multiple  cameras  by  iteratively  resolving  independency 
relationships  and confidence levels  within  the  graph  structure  of  the  network.  The output  of  the 
Bayesian belief network is the most likely 3D state estimates given the available data, and is sent to 
the top-level  3D Kalman filter.  This  filter helps to smooth out 3D trajectories and is also used to 
generate predicted target positions that can be fed back into the low-level camera trackers.

14.  The multi-camera system by Xu, Lowey and Orwell [16] is used track football players. It uses a 2-level 
Kalman filter configuration. The lower-level 2D Kalman filter uses the image position and the bounding 
box for the object’s state. The covariance is used to generate an estimate of the measurement error 
and this is projected on to the ground plane to get the related 3D measurement error. The 3D ground 
positions and their related error from the individual cameras, are then sent to the top-level multi-view 
module to be fused together

The multi-view tracking module uses a 3D Kalman filter to represent the state of established targets 
i.e. targets tracked in previous frames. Data fusion is performed by associating the observations with 
the established targets using an association matrix. This association matrix is populated with scores 
obtained from the Mahalanobis distance between the measured positions and the predicted positions 
and also using the measurement uncertainties. The nearest neighbour algorithm is then used to do 
the matching. 

Any remaining measurements that are not matched to existing targets, are considered to be new 
objects if they appear in more than one camera and are within a certain distance of each other on the 
ground plane.

15.  The multi-camera system by Kang, Cohen and Medioni [17], performs simultaneous tracking in 2D 
(image coordinates) and 3D (ground plane positions) using a centralised tracking system. To be able 
to  do  this,  the  images  from  all  the  cameras  are  pre-registered  together  using  a  ground  plane 
homography. 

For tracking, a set of 3 probabilistic models is defined – a 2D image motion model, a 3D ground plane 
motion model and an appearance model using colour information. The motion models are specified 
using a Kalman filter, while the appearance model is structured in a way to make it invariant to 2D 
rigid transformations. The joint probability model is then defined to be the product of the above 3 
probability models.

The tracking problem is then expressed as computing the optimal position in the 2D image and the 3D 
world coordinates of the moving object by maximising all the probability models. This is done through 
the use of the Joint Probability Data Association Filter (JPDAF).
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Table 1: Main characteristics of reviewed papers.

No. Main characteristics Ref

1. Data association: 3D Trajectory similarity. [1]

2. Data association: nearest neighbour, JPDAF, MHT methods. [2]

3. Data association: PMHT, S-D Assignment methods. [3]

4. Data association: 3D position + colour + object classification, cost functions, heuristic rules. [4], [5]

5. Data association: 3D position + colour + speed, distance metrics, association rules. [6]

6. Data association: 3D position + average colour, RAF method. [7]

7. Decentralised trackers exchange results and target re-acquisition,

Data association: epipolar geometry, colour histogram.

[8]

8. Low-level data fusion occurs before tracking, 

Data association: epipolar geometry, motion regions with constant colour, ground-plane 
probability map,

Centralised tracking performed in 3D on the ground plane.

[9]

9. Data association: 3D position, gating distance, appearance ratio. [10]

10. Non-synchronised multi-camera system,

Data association: 3D position, Kalman filter prediction, Mahalanobis distance,

Centralised tracking module using Kalman filter, with feedback to observation nodes.

[11]

11. Temporal registration for non-synchronous cameras,

2-level Kalman Filters,

Data association: 3D position, Kalman filter prediction, Mahalanobis distance.

[12], [13]

12. Temporal registration for non-synchronous cameras,

2-level Kalman filters with feedback,

Data association: 3D position, Kalman filter prediction. 

[14]

13. 2-level Kalman filters with feedback,

Data association: Bayesian Belief Network.

[15]

14. 2-level Kalman filters,

Data association: 3D position, Mahalanobis distance, Nearest Neighbour.

[16]

15. Simultaneous 2D and 3D tracking,

Data association: JPDAF mehod.

[17]
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  ALGORITHMS FOR DATA FUSION

4.1    3-D OBJECT LOCALISATION

Prior to the data fusion stage, the detected and tracked objects in each camera require accurate location in 

the 3-D world co-ordinates.  The location of an object is determined to be the centre of gravity on the 

ground plane (i.e. in the x and y world co-ordinates).  In this section we describe various methods used to 

attempt to estimate the location of the objects in the 3D world co-ordinates.

4.1.1Bottom centre bounding box – This was the first approach applied to the AVITRACK project.  The 

bottom centre of the bounding box was found to be only suitable for localising objects with negligible 

depth away from the camera. 

4.1.2 Projected  bottom centre  bounding  box –  to  alleviate  the  problem of  localising  objects  with 

significant depth the bottom centre of the bounding box was projected vertically in the image to the 

pixel location at which motion has been detected.  This generally improved the localisation for vehicles, 

but presented errors for objects where the boundary of the detected motion is non-rigid i.e. for people. 

A hybrid strategy was applied using the output of the classifier to distinguish people from other objects, 

after which the method presented in 4.1.1 or 4.1.2 was applied. 

4.1.3 Angle of camera to object – to improve the localisation in a generic manner with few assumptions 

made about the object types the hybrid strategy presented in 4.1.2 was improved.  For people objects 

the bottom centre of the bounding box is used as the point at which the object is localised on the 

ground  plane,  barring  motion  detection  errors  (e.g.  shadow  and  reflection)  this  is  a  reasonable 

assumption.  For the remaining object types the image point at which the centre of gravity is localised 

is chosen to be relative to the angle of the camera to the object.  For a camera lying on the ground 

plane the centroid will be relatively close pixelwise to the bottom centre of the bounding box, whereas 

for an object  viewed from directly overhead (i.e.  1 /2 radians angle between the camera and 

object) the centre of gravity will be close (pixelwise) to the centre of the bounding box.

Using  this  observation  a  simple  function  was  formulated  to  estimate  the  vertical  position  of  the 

centroid in the image based on the (2-D) camera angle to the object.  Taking a to be the angle measured 

between the camera and the object, the proportion p of the bounding box height (where 0≤p≤1 /2 ) 

was  estimated  as  p=1 /2 1−exp −a  where  ≡ln 2  /0.15×1 /2 .   The  horizontal 

position of the object centroid is taken to be the horizontal centre point of the bounding box, since this is 

generally an reasonable estimate.

4.2           SENSORY UNCERTAINTY FIELD  

The location measured for an object inherently has some uncertainty about that measurement due to the 

sensor properties and the location estimation technique. For a generic camera the 3D measurement 

uncertainty (also known as the measurement noise covariance), R,  is estimated by propagating an image 

plane covariance to the world co-ordinate system at a given value of height for the world location.  
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This estimation of measurement uncertainty allows formal methods to be used to determine the association 

of observations originating from the same measurement, as well as providing mechanisms for fusing the 

observations into a single, estimated, measurement.  For the measurement covariance Λ at location (x,y) 

in the image plane of camera c, the measurement uncertainty  R(xw,yw,zw)  at a given height  zw=0 (i.e. the 

ground plane) in the world co-ordinate system is given by [18]: 

where J is the Jacobian matrix found by taking the derivatives of the two mapping functions between the 

image and world co-ordinate systems.  The measurement uncertainty field is demonstrated in the figure 

below for camera 6, notice that the uncertainty becomes elongated perpendicular to the sensor in the far-

field.  

Figure 1 The Sensory Uncertainty Field for camera 6 computed using the method presented in Section 4.2.

The measurement covariance Λ can be biased with a priori knowledge about the expected uncertainty of 

the location estimation for a given object.  For each detected object in the image plane the measurement 

uncertainty Λ is dependent on the pixel uncertainty, the dimensions of the object (i.e. more uncertain for 

larger objects) and the quality of the 2-D measurement (e.g. reflection and shadow can introduce error).

The overall uncertainty of the object location in the image plane is therefore estimated as :
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Λ(xc,yc) is the estimated uncertainty in the measurement of a pixel and is defined by Λ(xc,yc) = I σ2 where  σ 2 

is some nominal variance.  ΛOi represents the uncertainty due to the dimensions of the observed object and 

can be computed as a proportion of the measured height and width of the bounding box for that object i.e.

where (wOi,hOi) are the measured dimensions of the 2-D bounding box for the i'th object and the values of r 

are chosen empirically to scale the uncertainty for each dimension (relating to the width and height).  ΛMj  is 

an additional bias factor to account for expected error bounds due to misdetection of objects.

4.3           DATA ASSOCIATION  

Two methods were investigated to compute the data association of the tracks.

4.3.1.     NEAREST NEIGHBOUR ALGORITHM

The initial method investigated was the nearest neighbour filter.  This type of filter is popular due to its 

simplicity.  There are two variants of the nearest neighbour approach, in the case of a single target these 

both consist of the following steps:

(1) Validation of the measurements to the predicted track location.

(2) Selection of one of the validated measurements for each track.

(3) Update of the track state assuming this measurement is the correct one (e.g. with a Kalman filter).

In Step (1) a validation gate is applied to limit the potential matches, the validation gate is determined by a 

threshold  τ on the normalised innovation squared distance between the predicted track states and the 

observed measurements:

where S is the innovation covariance, X is the a priori state estimate and Z is the observed measurement 

at  time  k.  .Values for   τ can be readily obtained from tables of  the  Χ 2 distribution, with the degrees of 

freedom equal to the dimension of the measurement.  

Step (2)  can  be  achieved  in  one  of  two  ways.   In  the  nearest  neighbour  standard  filter the  nearest 

measurement  is  chosen using the normalised innovation squared metric.   In  the  strongest  neighbour 

standard filter the validated measurement with the strongest signal is associated to the track.

The main problem associated with the nearest neighbour filter is that it is a discrete association, leading to 

an over-confidence in our belief that we have the correct measurement associated with a given track.  By 

not handling the probability of association, the nearest neighbour filter  is likely to lose tracks even in 

moderate clutter.
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The extension of the nearest neighbour filter to multiple targets viewed from multiple sensors is thus:

(1) For each track, obtain the validated set of measurements (one set for each camera).

(2) For  each  track,  associate  the  nearest  neighbour  (for  each  camera)  with  this  track  (stored  in  an 

association matrix, β)

(3) For each track, fuse the associated measurements into a single (fused) measurement.

(4) Update of each track state with the fused measurement (e.g. with a Kalman filter).

(5) Inter-sensor  association of  remaining measurements.   These are  subsequently  fused into  potential 

candidates for new tracks.

It is noted that (2) is a sequential operation as opposed to a batch analysis of the track to measurement 

associations;  this  is  a  more  efficient  (although  sub-optimal)  strategy  for  associating  the  tracks  and 

measurements.

4.3.2.     JPDAF ALGORITHM

As mentioned in the previous section, the Nearest Neighbour Filter is discrete in nature – i.e. it selects one 

observed measurement (the nearest or the strongest) as being the 'correct' measurement and uses only 

this observed measurement to update the state of the object being tracked. This is susceptible to errors 

when a mis-association occurs, i.e. when a measurement originating from noise is chosen over the true 

measurement.  In  the  presence  of  a  large  rate  of  noise  measurements  (due  detection  errors,  object 

fragmentation, etc.), the performance of the nearest neighbour algorithm begins to degrade. 

The Joint Probabilistic Data Association Filter (JPDAF), which is an extension of the Probabilistic Data 

Association  Filter  (PDAF),  does  not  make  a  discrete  selection,  but  it  uses  all  of  the  surrounding 

measurements  with  different  weights  (probabilities)  [2].  This  helps  to  make  the  association  of 

measurements with tracks more robust to the presence of noise. For this reason, PDAF/JPDAF is also 

referred to as an all-neighbours approach. 

The PDAF algorithm assumes only one tracked object is being observed in the presence of noise, while 

JPDAF extends PDAF for the case of multiple tracked objects. For the PDAF case with N measurements 

and 1 tracked object,   N+1 hypotheses are generated – hypothesis H 0 represents the case where all 

the measurements originate from noise (tracked object is unobserved at time t); while hypotheses H i for 

i =1  to  N, represent  the  case  where  measurement  i originates  from  the  tracked  object.  The  noise 

measurements are assumed to be independent identically distributed measurements with uniform spatial 

distribution   .  To  limit  the  number  of  potential  hypotheses,  a  validation  region  is  used.  Only 

measurements that fall within this validation region are considered and the equation for the validation gate 

is  the  same  as  that  used  in  step  (1)  for  the  nearest  neighbour  (see d2 in  previous  section).  The 

probabilities of the hypotheses is then given by:

p ' 0= N 1−PTD 
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where PTD is  the  probability  that  the  tracked  object  is  detected  at  time  t, d i
2

is  the  normalised 

innovation squared distance as computed in the previous section, and S is the covariance matrix. The 

last step in the above equations is a probability normalisation step. These probability values p i are then 

used to  build the association matrix.

In the multiple tracked object case of the JPDAF algorithm, given N measurements and T tracked objects, 

first  the measurements are validated by considering only those that fall  within the validation gate of a 

tracked  object  j  –  some  measurements  will  be  shared  between  tracked  objects  due  to  overlapping 

validation gates.  Next  all  feasible  hypotheses H i are generated,  by  considering the total  number of 

undetected tracked objects N ND (equivalent of H 0 in PDAF), the number of validated measurements
N j for  each of  the tracked objects  j,  and the total  number N F of measurements assumed to be 

generated by noise. 

The association probability calculation is done in a similar way to that of PDAF, except that now multiple 

tracked objects are involved, requiring multiple probability terms in the association probability equation:

g ij=
e
−d i j

2 / 2

2∣S∣

p '  H l =
N j− T − N ND  1−PTD 

N ND PTD 
 T− N ND  g ij ... g mn

p H l =
p '  H l 

∑ p '  H 

where g ij represents the probability that measurement i originates from tracked object j. The number of

g ij terms in p '  H l  is T −N ND , i.e. the number of tracked objects that are assumed visible at a 

particular time.

This process of enumerating all  the feasible hypotheses can be quite computationally intensive in the 

presence of a large number of closely-spaced tracked objects and large number of measurements. For the 

initial  implementation,  an  exhaustive  search  is  being  used.  This  can  be  improved  later  on,  by  using 

optimisation  techniques  and  previous  information  from the  tracked  objects  themselves  to  reduce  the 

number of hypotheses generated.
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4.4           DATA FUSION  

Once the data association is determined, the measurements can be combined into single fused estimates. 

This is achieved using one of two strategies[18] -  covariance accumulation and  covariance intersection. 

For discrete data association covariance accumulation estimates the fused uncertainty Rfused for N matched 

observations as:

The covariance intersection method is conceptually similar to the accumulation except that the observation 

uncertainty covariances are weighted in the summation:

where R i
c

is  the  measurement  uncertainty  of  the  i'th associated  observation  (made  by  camera  c); 

Covariance intersection therefore weights in favour of the sensors that have more certain measurements.

  The resulting fused observations are demonstrated in Figure 2 for the `Services Vehicle'  object;  the 

covariance accumulation method results in a more localised estimate of the fused measurement than the 

covariance intersection approach.

Figure 2 (Left) Frame 9126, camera 6 of sequence S21-Vehicles. (Middle) the fused measurement from all eight cameras (in black) 

for the services vehicle using the covariance accumulation method (Right) the fused measurement using covariance intersection.

For probabilistic data association the conditional probability of the association is used in the weighting.  For 

covariance accumulation the association matrix β (containing the per camera association probabilities) is 

incorporated thus[16]:

where β ij
c

represents the association probability between the i'th track and the j'th measurement made 

from the c'th camera.  The covariance intersection method can be updated in a similar manner.  The fusion 

of  discretely  associated  tracks  is  therefore  equivalent  to  the  probabilistic  approach  with  a  binary 

association matrix i.e. the entries of  β are 0 or 1.
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4.5           TRACK ESTIMATION  

Data association and fusion provides mechanisms for assigning the relationship between tracks and per 

sensor measurements.  Intertwined with this work is the dual problem of how to update and estimate the 

tracks using the information about the incoming data.  The Kalman filter is an optimal recursive algorithm 

used to estimate an unknown state based on a set of measurements; this state can be further applied to 

predict future measurements and hence improve the tracking of targets.  

In the AVITRACK test  sequences the filtering process was simplified by assuming that all targets are on 

the ground plane, and hence all the motion is 2-D.  While this may not be necessarily true for all objects 

(e.g. people walking up the stairs on the jetbridge) the assumption holds for all the objects we are currently 

interested in tracking.  The type of Kalman filter applied is a constant velocity model, with a state vector 

X=[x , y , ẋ , ẏ ] and a measurement vector Z=[x , y ] .  

Using the Kalman filter the set of tracks can be  predicted and subsequently matched to the new set of 

measurements.  Those tracks with measurements are corrected with the new observation.  Tracks missing 

observations become more uncertain due to the recursive addition of expected (unmodelled) process noise 

in the prediction step.

4.6          TRACK UPDATE RULES  

To ensure that only valid tracks are output rules are required to resolve tracking ambiguities.  One of the 

main  challenges  is  to  filter  out  short-lived  spurious  measurements  (i.e.  false  alarms),  these  type  of 

measurements can occur due to camera noise / shake, detection failure due to shadows/reflections etc, or 

occlusions  and  object  interactions.   The  following  rules  are  therefore  suggested  to  alleviate  these 

problems.

Creation - A track is initialised for any fused measurement that is not associated with an existing track. 

The confidence of the track is initially set to zero.  As supporting observations are made the confidence is 

increased  as  1−exp − t  where  t  is  the  age  of  the  track  and   is  set  such  that  after  a 

predetermined time period the track is deemed confident i.e. mature. 

Deletion – A track becomes eligible for deletion when no observations are made for a significant period of 

time.  For a track missing an observation the confidence of the track is decreased as N 0 exp − t 
where  N 0 is  the confidence value from when the track was previously  observed.   When the track 

confidence decreases below a pre-set value the track is deemed a ghost and removed from the track list 

after a fixed period of time has elapsed    (~ 1 second).  In the special case that a track is not mature and 

not observed (i.e. a new track with short-lived observations) then the track is terminated after a shorter 

period of missing observations (~ 0.2 seconds).

Merging – Due to 2-D detection, tracking and location errors the observations for larger objects often do 

not fuse correctly.  A merging strategy will be incorporated into the data fusion module for objects that have 

a significant depth away from the camera (i.e. vehicle categories) such that if two tracks exhibit a similar 

size and velocity and are within an extended validation gate then these tracks are merged into a single 

track.  For people merging of tracks may prevent the accurate tracking of groups due to the apparent 

proximity of the measurements (which may be single measurements from certain cameras, depending on 
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the view point).  The feedback of individual object information into the 2D tracking will allow more reasoned 

splitting of merged measurements if that measurement represents more than one object.

Splitting – Currently there is no mechanism for splitting a track into two or more separate tracks.

4.7 TRACK ATTRIBUTE ESTIMATION

The tracks  found during  the  data  fusion  process  have a  number  of  attributes  that  require  estimation 

included location, speed etc.  These attributes are estimated as follows:

● Location : Estimated using Kalman filter.  The per frame fused observation is made by averaging 

the per-camera object location estimates, with each location weighted by w i (i.e. the confidence 

of the measurements)

● Velocity : Estimated using Kalman filter (i.e. filtered from location estimates)

● Category :  Estimated using an IIR rolling average filter.  The per frame fused category estimate is 

made by averaging the per camera category estimates.  Like the location, this is also weighted by 
w i .

● Orientation : Estimated from the track velocity i.e. direction of travel is orientation of object

● Width/Length/Height :  The width and length 3D are estimated by taking the minimum (for the 

width) and maximum (for the length) of the associated 2D width observations made by the frame to 

frame trackers.  Height is taken as the average of the 2D height measurements.  This strategy 

appears a simple,  but  non-robust,  solution to this problem.  Alternatively,  a parameter  can be 

specified to use a priori estimates once the category is known.  

CONFIGURATION PARAMETERS

Table 8.1 below lists the parameters that need to be configured for the data fusion and associated tracking 
algorithms.

Algorithm Parameter Description Value 
used

All data fusion VALIDATION_GATE_CONFIDENCE Determines the maximum size of d for 
the validation gate computation by 
specifying the required confidence (as a 
percentage) of the association. 
Increasing this value constrains the data 
association to make the more certain 
associations.

99.0

All data fusion STATIONARY_THRESHOLD Value of speed (m/s) below which 
tracks are deemed to be stationary

1.0

All data fusion CONFIDENCE_THRESHOLD Only output tracks that have a 
confidence greater than this 
threshold

0.5

All data fusion OOB_X_MIN Minimum valid x value (in world co-
ordinates)

-50
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All data fusion OOB_X_MAX Maximum valid x value (in world co-
ordinates)

50

All data fusion OOB_Y_MIN Minimum valid y value (in world co-
ordinates)

-50

All data fusion OOB_Y_MAX Maximum valid y value (in world co-
ordinates)

50

Kalman filter MAX_FRAMES_UNOBSERVED Track can be unobserved for n 
frames before termination

25

Kalman filter PROCESS_NOISE_VELOCITY_PER_SE
COND

Process noise for velocity in m/sec 10.0

Kalman filter MIN_ORIENTATION_SPEED The minimum object speed when 
measuring the orientation.

0.1

Kalman filter USE_KNOWN_SIZE Replace estimated size of object with 
a priori knowledge

1

SOME RESULTS

The following Figures demonstrate the results of the data fusion module for sequences S3 (all cameras), 

S4 (cameras 3 and 6) and S21 (all cameras).  The Figures show a frame towards the end of the sequence 

with all confident tracks marked on the ground plane (confident is empirically deemed to be tracks with a 

confidence score >0.5).  For tracks present in the current frame the red ellipses denote the fused 

measurements for that frame, blue ellipses denote the Kalman state error, black triangles represent 

unconfident tracks and green triangles represent confident tracks.  A more formal evaluation using ground 

truth will be completed as part of 'Work Package 6.1 – Scene Tracking Evaluation' [?].

In all test sequences the data association algorithm was the nearest neighbour filter, the data fusion 

method used was covariance intersection and the track filter was the constant velocity Kalman filter.

8.1      S3-A320 results  

Figure 4 shows the data fusion result upto and including frame 05500 of sequence S3-A320.   It can be 

clearly seen that many objects (predominantly vehicles) at this frame are fragmented and the association 

step is not able to find the correct association.  Many of these problems are caused by two main factors (a) 

the poor localisation and representation of vehicles in the association step and (b) misdetection (due to 

shadows, reflection and occlusions etc) in the frame to frame tracker.

The most prominent missing track is that of the aircraft object, which is not found due to the difficulty in 

performing data association using only spatial location and uncertainty.  This can be alleviated with the 

addition of more features in the validation gate step, which will make the data association step robust to 

the problems presented by larger objects when using the standard techniques derived from research in 

radar-based tracking.  

Another related problem affecting this sequence is the recent modification made to the frame to frame 

tracking module, such that it now outputs stationary tracks for the duration of the observation.  The data 

fusion module has no method for handling these stationary objects, allowing them to be misassociated with 

adjacent, moving, observations.
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Figure 4  Frame 05500 data fusion result for sequence S3-A320 (all cameras).  

8.2      S4-A320 results  

Figure 5 demonstrates the tracking result for frame 01800 of the sequence S4-A320.  The sequence 

contains a GPU (white track), a services vehicle (light blue track), a person (yellow track) and some chocks 

deposited on the apron (green track).  

It can be seen that the tracks exhibit a reasonable continuity of ID throughout the sequence with a single 

track ID (denoted by a single colour) detected for each of the four main items in this sequence.  The data 

fusion result for this frame reveals that although the correct quantity of tracks are found, the data from the 

multiple cameras does not appear to be fused correctly.  

Further analysis of the per camera tracking results reveals that this is due to misdetection of shadow and 

vehicle reflections leading to poor localisation of the objects in the scene.  Without a merging strategy the 

system is unable to recover from this problem, although a localised non-maximal supression strategy is 

applied to prevent newly created objects becoming confident in the presence of older tracks that have 

supporting evidence; this is a temporary solution to alleviate some of the problems that result from 

detection error or congested apron regions.
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Figure 5  Frame 01800 data fusion result for sequence S4-A320 (cameras 3 and 6 only).  

8.3      S21-Vehicles results  
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Figure 6 Frame 09100 data fusion result for sequence S21-Vehicles (all cameras).  

Figure 6 shows the data fusion result for the sequence S21-Vehicles.  In this sequence many of the objects 

are well separated and there is less predominant shadow; due to this there is reasonable track location 

and fusion, although errors do occur for the larger vehicles due to inaccurate localisation and inadequate 

association metric between observations and tracks (as discussed for sequence S3-A320).  These errors 

are evident by a loss of identity for tracks (shown by a change of colour ID) and by the presence of two 

adjacent tracks with similar trajectories.  

The performance of the data fusion module on S21-Vehicles suggests that many of the problems fusing 

observations on sequences S3-A320 and S4-A320 can be attributed to the misdetection of the 

observations.  With more accurate detection of the observation the localisation strategy appears to be 

adequate, especially for people and smaller vehicles which are generally fused successfully under such 

conditions.
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CONCLUSION

To conclude, the data fusion module performs adequately given isolated targets correctly detected in the 

frame tracker. The data fusion module incorporates uncertainty information in the location estimate of the 

observation and it is often an inaccurate location estimate that results in the failure of the data association 

step.   It is noted that a significant proportion of the localisation problems that occur in the data fusion 

module can be traced back to the motion detection module i.e. shadow, reflections etc.  

The features used in the validation gate appear to be inadequate for handling the association of 

observations for vehicles in close proximity; the use of purely spatial features has been found to be 

adequate for tracking isolated targets, but results in misassociation for vehicles of different 

classes/velocities.  

With correct data association the mechanisms for data fusion and object tracking algorithms appear to be 

adequate for the AVITRACK project, therefore we propose that the majority of the remaining work on the 

data fusion module is focussed on the object localisation and data association problems.

FUTURE WORK

Future work in the data fusion module consists of:

(1) Evaluate the JPDAF algorithm and compare the probabilistic association method with the deterministic 

nearest neighbour method.

(2) Add rules for merging and splitting of tracks to make the tracker robust to data association failures.

(3) Improve the association metric,  currently this is a gating method using the location and uncertainty of 

the observations and the confidence has previously been incorporated to weight the fusion in favour of 

more confident tracks (although the confidence in the frame tracker is somewhat arbitrary).  The use of 

these features has been found to be adequate for tracking isolated targets; we propose that the location 

alone will be insufficient to allow modelling of more complex scenarios involving many classes of object 

interacting with each other.   

The suggested solution to this problem is to improve the association feature space to take into account 

the status of the object (i.e. occluded, stationary or moving etc), the classification score , the location 

and the velocity etc.  Improving the data association matching score by expanding the features applied 

will increase the robustness of the data fusion for objects in close proximity or objects that are 

misdetected in the per camera frame trackers.

(4) Allow per camera classification results with more confident matches (especially for sub-types) to be 

used as the fused classification result since some cameras may have unreliable recognition of objects 

which decreases the reliability of the data fusion classification result under the current system.
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