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Chapter 10 
 

Blob Tracking 
 

This chapter describes the implementation of the Blob Tracking method used by the 

OmniTracking application. The first section describes the initial grouping of 

foreground pixels into blobs using connected components, followed by how these 

blobs are processed to eliminate noise and handle object fragmentation. Then, the 

similarity criteria for matching blobs to objects are introduced together with how the 

matching process and tracking is performed. The chapter finishes off by mentioning 

some results and the limitations of the blob tracking method.  

 

10.1 Connected Components 

 

Blob tracking is based on the idea that world objects are projected into spatially 

compact areas in the image plane, appearing as sets of contiguous pixels, called blobs,

in the image.  

 

The output of the background subtraction algorithm is a classification of pixels into 

foreground, background and shadow pixels, given by the label map l(x,y) (described 

in §8.7.4)1. This label map defines a segmentation given by the binary image S where: 
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(10.1)

Grouping foreground pixels into blobs is done by finding connected components in 

S(x,y). A connected component is a set of pixels where each pixel is connected to the 

1 For the purpose of object tracking, the pixels labelled as shadow are considered as background from 
this point onwards. 
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others through a path made up of adjacent pixels within the same set. Adjacency 

between pixels in this case is defined to be 8-neighbours. A component labelling 

algorithm is used to traverse S(x,y) and assign a unique label to each blob (connected 

component), giving a list B of blobs as its result [JAIN95 §2.5.2]. At the same time as 

the labelling is being done, some basic information about each blob is gathered, most 

of it is accumulated as each pixel is visited by the algorithm: 

Blob information  

Bounding box The rectangular bounds of the blob. 

Area Number of pixels. 

Seed point An arbitrary pixel belonging to the blob. Set to the first pixel 
encountered by the labelling algorithm while it is scanning the 
image. 

Figure 10.1(b) shows the results of the component labelling algorithm for a sample 

frame from the PETS-ICVS dataset. 

 

10.1.1 Size Filtering 

 

The hysteresis thresholding algorithm described in §8.7.5 reduces most of the noise-

induced pixels, by removing those with little support from their neighbours. But 

hysteresis thresholding is not able to remove noise caused by camera movement, for 

example. Some of this remaining noise can be eliminated at this stage by using a size 

filter, since it can be assumed that very small blobs are more likely to arise from 

noise2. A blob with an area smaller than some pre-defined threshold Amin, will be 

deleted from the list of blobs B. This simple filtering is very effective and is not 

expensive to do, because the area of a blob is already known and the number of blobs 

in an image will normally be limited. In Figure 10.1(c), 4 blobs were removed using 

size filtering. 

 

10.1.2 Blob Clustering 

 

One major problem that affects background subtraction is when parts of an object 

have the same colour as the background (camouflage problem – see §8.6) and hence 

are undetectable. This causes the object to be fragmented into several blobs, as in the 

case of two of the persons in Figure 10.1(b). But it can be assumed that the fragments 

2 The remaining noise will be dealt with during the object tracking phase by using temporal constraints. 



will be spatially close to each other and therefore a blob clustering algorithm can be 

used.  
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(d) 

omponents and Blob Clustering. (a) original image from the PETS-
und by the component labelling algorithm; (c) result of running size 
 blobs; (d) blob clustering to correct for object fragmentation. 

ers use a bounding-box approach to blob clustering: if the 

lobs overlap (or are sufficiently close to each other), then the 

e [COLL00]. This is an efficient method, but assumes that the 

epresentation of the blob’s boundary – which is not the case 

y-oriented objects. This is not much of a drawback for 

re objects normally appear in an “upright” position and 

 a common occurrence. But in the case of omnidirectional 

red orientation. For example, in Figure 10.1(c), blob #10 has 
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a diagonal orientation. If using bounding boxes, blob #10 appears ‘closer’ to blob #12 

than #13 is (in fact they overlap!), when in fact the opposite is true. Therefore it was 

decided to use a combination of the faster bounding-box approach together with a 

slower distance calculation method. The algorithm is described below: 

 

Given two blobs B1 and B2, their bounding boxes can be used to check if the blobs are 

too far from each other or not: 

dx = distance between bounding boxes of B1 and B2 in x-direction, 

dy = distance between bounding boxes of B1 and B2 in y-direction3.

if dx � dmax_clustering and     dy � dmax_clustering then :

use distance calculation method on B1, B2.

else :

skip these blobs. 

(10.2)

The value dmax_clustering, is a global constant that is user-configurable and represents the 

maximum distance that two blobs can be apart and still be clustered together. 

 

The distance calculation method uses the distance transform to get an estimate of the 

smallest distance between two blobs. The distance transform is a procedure that 

generates an ‘image’ containing the approximate distance of every pixel belonging to 

some set S, from its background S [JAIN95 §2.5.9]. This image is calculated using a 

pre-defined distance mask and a sequence of additions. For the OmniTracking 

program, the distance transform function available in the OpenCV library was used, 

since this is optimised for MMX processors. A 3x3 mask is used that gives an 

approximation for the Euclidean distance.  

 

For blobs B1 and B2, the smallest distance between them is given by: 

roi = minimum bounding box containing both B1 and B2

DT = distance transform of { }roippyxp ∈∈= ,B:),( 1

dmin = { }[ ]2B),(),,(:min ∈= yxyxDTdd

if     dmin � dmax_clustering then :

combine B1 and B2 into one blob cluster. 

(10.3)

3 If either of the distance components along the x- and y-axis is larger then the maximum distance 
threshold, then the actual 2D distance between the two bounding boxes will also be larger. 
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At first, using the distance transform may seem expensive, but this is only used for a 

limited number of blobs and within the image area covered by their minimum 

bounding box. In addition, through the combined use of hysteresis thresholding, size 

filtering and blob clustering (all three working locally), the OmniTracking application 

does not require any morphological operations to be applied (globally on the image). 

 

Figure 10.2 shows how the blob clustering algorithm is applied to the blobs numbered 

#10 and #12 in Figure 10.1(c). While Figure 10.1(d) shows the result of the algorithm 

and how the objects are correctly labelled. 

 

(a) (b) (c) (d) 

Figure 10.2: Blob clustering algorithm. (a) The common bounding box roi is calculated; (b) 
complement of B1; (c) doing distance transform on 

1B (black represents smallest distance); (d) 

using B2 as a mask on the DT image and finding the minimum distance. 

Because of the non-uniform geometrical nature of omnidirectional images and to add 

more flexibility to the blob clustering algorithm, distances can also be expressed in 

terms of their components in polar coordinate form (r, ) with the origin being the 

image centre. That is, the threshold dmax_clustering can be specified in terms of the 

distance threshold along and along r. The former one is an angular distance and is 

specified in degrees. By default, these are set to –1, meaning that the component-wise 

thresholds are not used. For example, in the case of the PETS-ICVS dataset, a 

maximum azimuth distance threshold (along ) was used in conjunction with 

dmax_clustering, to place a further constraint on blob clustering and based on the 

observation that the objects being tracked in this dataset consists of people which are 

normally elongated in a ‘vertical’ direction. The conversion of a point or distance 

from image coordinates (x,y) to polar coordinates (r, ) is done using a fast look-up 

table, created by the calibration module (§7.4.4). 

 

Given a list of blobs B = {B1, B2, B3, …, Bn} as input, the blob clustering algorithm 

generates an output list of blob clusters C:

C = { C1={Bi, Bj : d(Bi,Bj) < dmax_clustering}, C2, … }. (10.4)

B2

B1 dmin 

DT(B1)
B1

DT(B1) ∩ B2
roi 
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For example, the cluster list for Figure 10.1(d) is:  

{ C1={B1,B2,B4}, C2={B5}, C3={B9}, C4={B10}, C5={B11,B12,B13} }. 

 

10.2 Object Features 

 

An important aspect of object tracking is selecting features that can act as a 

representation for (‘describe’) detected objects. For blob tracking, these features are 

extracted directly from the blob clusters found in the image. The set of features (or 

feature vector) is then used, in conjunction with temporal constraints, to match blobs 

from one frame to the next and hence track objects over time.  

 

The two main constraints applied in this case are the temporal constraint, where an 

object is expected to show only a small movement in its position from one frame to 

the next, and the similarity constraint, where the object’s appearance is also expected 

to show little change. As mentioned in §9.1, the features should ideally: 

• represent characteristics of the object that stay relatively constant in terms of 

the constraints mentioned above, 

• can be used to discriminate between different objects in a reliable way, 

• be robust to changes in the object’s appearance or the environment. 

 

The following features were chosen for the blob tracking method of this application: 

 

Object Features  

Extent The rectangular bounds of the object. 

Size Area of the object (number of pixels). 

Centroid The centre point of the object. 

Colour  A representation of the object’s colour. 

The first feature gives an indication of the image area covered by an object and is 

represented by the object’s bounding box. For the omnidirectional image, the 

bounding box is measured in polar coordinates ( ,r), where is the extent of the 

object along the azimuth angle and r is the radial extent4. (A separate bounding box, 

4 Distance r could be converted into the angle of elevation φ to get a true spherical coordinate 
representation ( ,φ) for the bounding box (as in §6.5). But this was deemed to be costly, and instead the 
radial distance from the image centre is used. This is defined as the distance along the line joining the 
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defined in the image x,y coordinate space is also maintained for each object. This 

bounding box is not used for matching or tracking purposes, but only serves to restrict 

the image area to be scanned when iterating through the object’s pixels). The next 

feature, object size, is simply a count of the number of pixels, while the centroid is the 

average position (x,y) of the pixels. The fourth feature is the object’s colour, which is 

represented as a histogram. The HSV colour space is used because of its separation of 

chromaticity from the brightness component (see §8.7.2.1), thus allowing the two to 

be treated separately and one given more attention than the other. The relationship of 

these object features to the underlying blob cluster5 is illustrated in Figure 10.3 below. 

 

Figure 10.3: Object Features 

 

One advantage of the choice of these features is that they can be extracted from the 

image in an efficient way. In the case of the colour histogram, the omnidirectional 

image has already been converted to HSV during the background subtraction phase 

and this is re-used here.  

 

10.3 Similarity Measures 

 

Using the object features described in the previous section, the following similarity 

measures are defined: 

 

point to the image centre. The only disadvantage of using ( ,r) is the difference in units (degrees, 
pixels) – this is taken care of when using the bounding box for matching blobs. 
5 When discussing features, the words object and blob clusters will be used interchangeably. The 
features are used for both within the program, for example, when comparing new blob clusters in an 
image against the existing objects. 

centroid colour histogram

r

image centre 

number of 
pixels (size)

bounding box 
(extent)
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Similarity Measures  

Overlap This measure gives the amount of overlap between two objects. 

Centroid distance The distance between the centroids of two objects. 

Area ratio The ratio of the size of two objects. 

Colour Similarity The difference between the colours of two objects. 

The first two measures are used to determine how far an object has moved when 

comparing it to potential matches in the next frame. The temporal constraint says that 

the overlap should be high and the spatial distance should be small. The other two 

measures (area and colour) are used to compare the appearance of the object with that 

of the potential matches, which should be nearly equal according to the similarity 

constraint. 

 

10.3.1 The Overlap Measure 

 

The overlap measure is calculated using the bounding boxes of the two objects, as 

indicated in Figure 10.4. Given two blob clusters C1, C2 and their bounding boxes: 

)(area)(area
)),(onintersecti(area2

),overlap(
21

21
21

CC

CC

boxbox

boxbox
CC

+
×=

where:  219021)(area rrbox H −×−= °θθ

(10.5)

This measure produces a result within the range [0..1], where 0 means no overlap and 

1 means full overlap, that is, the bounding boxes are identical. As mentioned in §10.2, 

the bounding box contains mixed units – the azimuth range [ 1.. 2] is measured in 

degrees, while the radial range [r1..r2] is measured in pixels. To get a meaningful area 

value, the azimuth range of the bounding box is converted to pixels as shown in 

(10.5), so that both have the same units. 

 

Figure 10.4: Overlap and Centroid Distance Measures 

overlap measure 

centroid distance measure 
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10.3.2 The Centroid Distance Measure 

 

This measure indicates how far away the centroids (x,y) of two objects are and is 

calculated using the equation: 

usndary_radimirror_bou2
),(

1),istance(centroid_d 21
21 ×

−= CCd
CC

where:  2
21

2
2121 )()( CCCC yyxx),Cd(C −+−=

(10.6)

where the result is in range [0..1], with 1 if the centroids of the two objects are exactly 

at the same position and 0 if they are the farthest possible distance apart (on opposite 

sides of the image). 

 

10.3.3 The Area Ratio Measure 

 

The area ratio is used to compare two objects by checking how similar they are in 

size: 

)size,max(size
)size,min(size

area_ratio
21

21
21

CC

CC),C(C = (10.7)

The output value if this measure is also within range [0..1], with value 1 meaning the 

two objects have identical size. 

 

10.3.4 The Colour Similarity Measure 

 

One way of checking how similar two objects are is to compare their colour 

histograms. Using colour as one of the object’s feature provides several advantages 

such as robustness to changes in an object’s size, orientation, rotation, etc. For this 

implementation, colours are expressed using the HSV colour space and the histogram 

consists of 32×32×16 bins for the H,S,V colour components respectively. The number 

of bins chosen reflects a balance between resolution and image noise. Also, a large 

histogram will mean more memory is needed for each object. The histogram for the 

brightness component contains half as many bins (lower resolution) as the other two, 

in order to reduce the sensitivity of the object’s colour to lighting conditions. 
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A histogram can be viewed as a discrete probability distribution function and there are 

several methods available in the field of statistics for comparing distribution 

functions. One such measure is the Bhattacharyya metric and is the one selected for 

this application. This metric has many desirable properties, many of which are 

examined in [AHER97; THAC96], including self-consistency and having a fixed bias 

(compared to the well-NQRZQ� 2 test).  

 

Given two discrete normalised histograms H and G, where H(i) is the number of 

colours in bin i, the Bhattacharyya coefficient B is defined as: 

∑
=

=
N

i
B iGiHGH

1

)()(),(ρ

provided: ∑∑ ==
ii

iGiH 1)(,1)(

(10.8)

The coefficient B is within the range [0..1], with B = 1 when the two histograms 

match perfectly. The colour similarity measure is then defined to be: 





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∈ VSHC

CC
B HHCC

,,
2121 ),(

3
1

),ilarity(colour_sim ρ (10.9)

with the result within the range [0..1], where 1 indicates a perfect match. 

 

The left-hand column of Figure 10.5 (next page) shows the histogram constructed for 

the person shown (labelled ‘A1’) in frame #10815 of the PETS-ICVS dataset. The 

histogram is shown in red, green, blue for the hue, saturation, value respectively. The 

second column shows the histograms for the 5 objects (C1, C2, etc.) of Figure 10.1(d) 

and the value of the Bhattacharyya coefficient for these objects compared to object A1 

of the earlier frame. The value is highest for object C2.
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frame 10815  frame 10835  
A1 

0 0.5                                       1 
B(A1,C1) = 0.4972 

C1 

hue:

saturation:

brightness:

B(A1,C2) = 0.9013 

C2 

B(A1,C3) = 0.4338 

C3 

 

B(A1,C4) = 0.6293 

C4 

B(A1,C5) = 0.5952 

C5 

Figure 10.5: Colour Similarity measure. Comparison of object A1 (left column) taken from 
frame 10815 of the PETS-ICVS dataset, with the objects of frame 10835 (right column). The 
best match for object A1 is blob cluster C2.

10.4 Object Tracking 

 

Object tracking is done by solving the correspondence problem between blob clusters 

and objects on a frame-by-frame basis. Blob clusters are given by the list C that was 

generated at the end of §10.1 – these are extracted from each image frame t and only 

exist for the duration of that frame. On the other hand, objects are maintained in a 

global list O and last for the duration of the program. For each new frame, blob 

clusters are matched with the existing objects using the similarity measures defined 

beforehand. Any correct matches will result in the object being updated with the blob 

cluster’s state (hence the object is tracked from its previous position at time t-1 to the 

new position t). If an object has no corresponding blob cluster, then the object is 

considered ‘lost’. And if there is a blob cluster with no corresponding object, then it is 
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potentially a new object. This process is then repeated for the next image frame t+1.

The algorithm is shown in Figure 10.6 below: 

 

Figure 10.6: Blob Tracking Algorithm 

 

Objects maintain the following information: 

Object information  

Object State Consists of the feature vector describing the object. 

Visibility State These indicate if the object is being tracked, age of the object, if it 
has been lost, etc. 

History Information maintained for historical purposes to be used for 
summarisation, showing path of object, etc. 

initialise objects list O

find list of blobs B using connected components (§10.1) 

run size filtering on blob list B (§10.1.1) 

group blobs into clusters and store in list C (§10.1.2) 

extract feature vector v for the clusters of list C

for each object o∈O and cluster c∈C, calculate the score 
matrix entry S(c,o) using the similarity measures (§10.4.1) 

update objects’ state using cluster data – use the  
cluster’s feature vector v to update that of the object 

add cluster to objects list O and 
initialise it as a new object 

any remaining 
unmatched clusters? 

yes

t= t+1 

image frame t

find the best match from the score matrix (§10.4.2) 

perform consistency checks on matched pairs 

update the objects’ visibility state (§10.4.3) 

correct match? 

no 
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The object state consists mainly of the set of features mentioned in §10.2. Objects get 

this feature information from the blob clusters they match with. The visibility state is 

made up of a set of values and flags that: 

• indicate when (frame number) the object was born (first detected). This is used 

by some consistency checks to derive the age of the object to serve as a 

measure of confidence in the object. 

• indicate if the object’s status is currently ‘lost’, ‘tracked’, or ‘merged’. An 

object is in a lost state if it does not match to any of the blob clusters in the 

current image frame. And an object is in a merged state if it matches with a 

blob cluster that also matches with another object – that is, both objects share 

the same blob cluster. 

• show the ‘number of lives left’. This is a running count that is incremented 

every time the object is successfully tracked from one frame to the next and is 

decremented every time the object is lost. When the count reaches zero, the 

object is deleted. 

• keep a count of how long an object has been in a lost state. This value is reset 

once the object matches with a blob cluster (is found again). It is used in 

conjunction with the number of lives to determine when to delete an object. 

 

Information of a historical nature includes the path of the object, the starting position 

when the object was first detected, the maximum size the object has attained during its 

tracking, etc. Most of this information is used by higher-level algorithms, for 

example, a node that summarises what has been seen by the tracking application. 

 

10.4.1 Match Scoring 

 

Given the list of blob clusters C extracted from the current frame and the list of 

objects O, a match score matrix S is constructed. The score is calculated for each 

cluster-object pair and consists of a weighted sum of the four similarity measures of 

§10.3, defined as: 
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The score takes a value in the range [0..1], with 1 for a perfect match. The weights are 

used to give different importance to the similarity measures. For the OmniTracking 

program, the following weights were chosen: 

( )0.1W,0.1W,5.0W,0.2W overlapdistanceareacolour ==== (10.11)

A higher weight was given to the colour similarity measure as this was found to be a 

good discriminator, while the area ratio measure provides only a marginal benefit, so 

its weight was reduced. 

 

While calculating the scores for all possible cluster-object pair, outright mismatches 

are eliminated. For example, if the centroid distance measure indicates a distance 

between the two objects that is larger than the maximum allowed movement per 

frame, then the score is set to 0. The same is done if the area ratio indicates a too large 

area change. This can be viewed as applying thresholds on the individual distance 

measures. 

 

10.4.2 Matching Blob Clusters to Objects 

 

Once the match scoring process is finished, the matching process tries to find the 

globally optimal match from the score matrix S, by minimising the error: 

( )∑ −=
ji

ji ocs
,

),(0.1ε (10.12)

If a match solution leaves some blob clusters unmatched, then a penalty is added to 

the total error . Blob clusters that are left unmatched will be considered to be new 

objects. The idea behind the use of the penalty is that the algorithm tries to 

conservatively match clusters to established objects and then reluctantly creates new 

objects from the unmatched clusters left. This is similar in principle to the idea of 

using ‘null’ matches as described in [STAU99] – an unmatched blob cluster matches to 
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the null object which always gives a constant error. Although in the case of [STAU99],

the matching is between connected components and Kalman models. The penalty 

value used in this case is � $Q�H[DPSOH�RI�WKH�RSWLPXP�PDWFK�LV�VKRZQ�LQ�EROG�LQ�
Table 10.1 

 

Table 10.1: Match Score Matrix for frame #10835 of PETS-ICVS dataset (see Figure 10.1(d)). 

 O0 O1 O2 O3 O4 

C1 0.3542 0.5036 0.9741 0.3543 0
C2 0 0 0 0.5311 0.4278
C3 0 0.4392 0 0.7031 0.4664
C4 0.9684 0.5189 0.4467 0.4035 0
C5 0.4386 0.9314 0.5066 0.4062 0

Finding the global optimal solution by iterating through all the cluster-object pairs has 

order O(n!) which can cause combinatorial explosion. The set of objects O and blob 

clusters C can be considered to be a directed bipartite graph G = (O,C), with the 

match scores forming the edges linking elements of O to those of C6. There are 

several greedy algorithms that can be used to find a near-optimal solution for a 

bipartite graph, such as the well-known Hungarian assignment method. But 

unfortunately, due to the addition of the penalty for unmatched clusters, the author 

could not find a greedy algorithm or any other algorithm that improves on the order 

O(n!). 

 

But using rules like those mentioned at the end of the previous section, can at least 

help to reduce the possibility of combinatorial explosions. In particular, the 

maximum-allowed movement threshold uses the centroid distance measure to 

spatially split the graph into several smaller sub-graphs, as shown in Figure 10.7 

below. Generally, each sub-graph will contain only a few objects, which can then be 

matched using an exhaustive search. 

 

6 The elements of a bipartite graph consist of two disjoint sets, with no edges defined between elements 
of the same set. 
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Figure 10.7: Matching as a graph search problem. The blob cluster’s centroids are shown as 
black circles, while the object’s centroids are the white-filled circles. The graph is split up into 4 
sub-graphs, shown with dashed outline, using the maximum allowed movement threshold. 

 

10.4.3 Updating the Object 

 

The output of the matching process is a set of correspondences (Oi,Cj) between blob 

clusters and objects. Based on these correspondences, the object’s visibility state is 

updated as follows: 

if    Oi has no matching Cj then :

object is ‘lost’ number_of_lives – 1 
 lost = true 
 lost_count + 1 

if    Oi matches with Cj then :

number_of_lives + 1 
 lost = false 
 lost_count = 0 

 if     Cj matches with Ok, Ok � Oi then :

object has ‘merged’ PHUJHG� �WUXH 

(10.13) 

if    Oi is lost    and    number_of_lives � �����then 

delete Oi

if    Oi is lost   and lost_count > Tlost and   size < sizemax_prev then:

delete Oi

The last two conditions define the object deletion rules. The second rule is used for 

the cases where an object moves away from the camera until it gets very small and 

disappears altogether. The value sizemax_prev in this case stores the maximum size that 

O5

C1

O6

C4

C2

C6

O3

O2 score(C1,O3)

C7 O4

sub-graph 
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the object had in previous frames – that is, to check if the size of the object is really 

getting smaller and is not a new object coming into view. 

 

The object’s feature vector is updated by using the features from the cluster blob it 

matches to. For the first three (centroid, size and bounding box) a full update is done, 

and the cluster’s information overwrites that of the object. This ensures that changes 

in the position and size of the object come into effect immediately. But for the colour 

histogram, a partial update is done using the exponential forgetting equation defined 

by (8.8), with having a default value of 0.4. When an object is in a merged state, 

then its feature vector is not updated and the object is thus frozen until it is no longer 

merged. The reason for freezing the object is because the tracker is not able to tell 

which part of the blob belongs to which object. 

 

The final task performed by the tracking algorithm is to search the list of blob clusters 

C for any cluster that has no matching object. These are considered to be new objects 

and are moved into the object list O, and their visibility state is initialised. 

 

10.5 Results 

 

The first observation that can be made is that the blob clustering algorithm used by 

the program produces good results, especially in the case of objects having the same 

colour as the background, which are fragmented by the background subtraction 

algorithm. This is particularly evident in the PETS-ICVS dataset, where objects have 

a large apparent size due to their closeness to the camera and one of the persons in 

particular has a colour indistinguishable from the white walls. The algorithm groups 

the fragments correctly throughout the whole sequence. Some examples are shown in 

Figure 10.8 below. 

 

Figure 10.8: Results: Blob Clustering 
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Blob tracking works by using the blobs extracted from the image, based on the 

assumption that real world objects project themselves into blobs in the image. If two 

world objects occlude each other or appear to be touching in the image, only one blob 

will be detected. This causes the tracker not to be able to identify the two objects 

while they are merged together and in the worst cases to lose the objects completely. 

This is a serious drawback of blob tracking methods – they are not robust to occlusion 

and object merging. 

 

1. 1.

2. 2.

3. 3.

4. 4.

5. 5.

6. 6.

7. 7.

(a) (b) 

Figure 10.9: Results: Occlusion and Merging.   (A yellow bounding box 
indicates the object is in a merged state and therefore its state is frozen, 
while a white/blue bounding box represents a normal state). 
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Figure 10.9(a) shows an example where an object occludes another in the PETS-2001 

dataset. Although the tracker recovers object #11 successfully after it has been lost in 

frame 6, there is also the problem that the two objects merge just before occlusion. 

Starting from frame 3 till 5, the objects appear as one blob, and as mentioned in the 

previous section, the two objects match to the same blob, are labelled as ‘merged’ and 

their state is frozen (indicated by a yellow bounding box in the diagram). Not doing 

so, will result in both objects adapting to the same blob as one pollutes the feature 

vector of the other. But on the other hand, if the two objects were to merge and move 

at the same speed, it is very likely that both objects will be lost. 

 

Occlusion and merging is more of a problem in the PETS-ICVS dataset, because of 

the proximity and large size of the objects. For example, Figure 10.9(b) shows how 

object #6 is merged and later occluded by object #2. When object #6 reappears from 

behind #2, it immediately merges with object #5. The large distance travelled by 

object #2 while merged and occluded, causes it to be lost and eventually the object 

dies. The temporal constraints used by the program could be relaxed to accommodate 

such large movements and allow blobs to match over a larger part of the image – but 

then other problems will appear and may defeat the purpose of such constraints. 

Object #2 is occluded only for a short period from frame 2 to 3 and then from frame 5 

to 6, so it could potentially be tracked in the rest of the frames. But from the point of 

view of image blobs (and therefore blob tracking), the object is not visible as a 

separate object over a longer period of time. 

 

As regards to the object features, it was found that the use of the HSV colour 

histogram together with the similarity measure based on the Bhattacharyya coefficient 

provides a good discrimination between objects. For example Figure 10.10 shows the 

histograms for the two objects of Figure 10.9(a). Even though the objects have a low 

contrast, there are several differences between their histograms, and this allows the 

two objects to be differentiated from each other. The difference between their 

histograms is given in the right-hand column. The figure also shows how the colour 

histogram of each object changes over time (three frames in this case) – it remains 

relatively stable over time. 
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HA1 HB1 B(HA1,HB1)=

0.3681

HA2 HB2 B(HA2,HB2)=

0.4406

HA3 HB3 B(HA3,HB3)=

0.3911

B(HA1,HA2)=0.8918 
B(HA2,HA3)=0.9207 

 B(HB1,HB2)=0.9533 
B(HB2,HB3)=0.9754 

Figure 10.10: Results: Colour Similarity.   
 

10.6 Conclusion 

 

This chapter described how the blob tracking technique was implemented by the 

OmniTracking program; how the foreground pixels are grouped into blobs, how blob 

clustering is performed and how the blobs are matched with existing objects on a 

frame-to-frame basis. The object features used for the matching process are also 

described, in particular the use of the HSV colour histogram, which is found to be a 

good feature to match with. As a conclusion, the blob tracking method can lose track 

of objects in the presence of occlusion and object merging. Even when not lost, the 

exact position of objects may be unknown when in a merged state. This reduces the 

usefulness of this method. Blob tracking can be used when speed is very important or 

in sparse environments where the chances of occlusion and object merging are 

minimal. In other cases, more robust tracking methods should be used. 
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