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Chapter 11 
 

Colour-based Tracking 
 

This chapter describes the implementation of the Colour-based Tracking method. The 

first section gives an overview of how colour information can be used to track objects 

by means of statistical methods. This is followed by a description of how colour is 

modelled using a Gaussian Mixture Model and how the Expectation-Maximisation 

(EM) algorithm is used to fit the model to an object. The tracking procedure is 

described next, together with how the object mixture model is updated to handle 

variations in the appearance of the object. The chapter finishes off with some results 

obtained from this method. 

 

11.1 Colour Models 

 

It was shown in the previous chapter (§10.5) that colour information is a very useful 

feature for representing objects. Colour is robust to changes in the appearance of an 

object such as deformations, rotation, and scaling. And by using certain types of 

colour spaces, the colour information about an object can be made independent of any 

light variations in the scene1 – such as the HSV colour space, which separates the 

chromaticity values from the illumination value (others are given in §8.7.2). In 

addition, since colour is a global property of the object, it is also robust to partial 

occlusion2. Another advantage to using colour is the ease with which it can be 

extracted from an image (compared to finding other features like corners, edges, etc.) 

 

1 This property is referred to as colour constancy [HORP99].  
2 This may not be strictly true for multi-coloured objects, since during partial occlusion, one or more of 
the colours may be hidden from view, leaving only some of the colours visible. 
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Objects in the world are normally multi-coloured, either consisting of parts made up 

of individual colours or else having a multi-coloured texture. Therefore representing 

an object by single values such as the average colour is not a useful model. One 

possibility is to use a histogram H, made up of a certain number N of bins, like the 

model used in §10.3.4 for blob tracking. If the histogram is normalised so that 

∑ =
=N

i
iH

1
1)( , then the histogram can be interpreted statistically3 as a discrete 

probability density function, where H(i) gives the probability p(c) that a given pixel of 

the object takes the colour c. An example is shown in Figure 11.1. 

 

When using histograms as colour models for an object, there is the question of how 

many bins to use. Using a large number of bins gives a higher resolution but at the 

cost of being more prone to error from camera noise – since for error , it becomes 

more probable that colour c, affected by noise c± , falls into one of the neighbouring 

bins c-1 or c+1 instead of in c. Using a small number of bins leads to a poor 

probability resolution (colours are ‘averaged’ out) as well as increasing the impact of 

quantisation errors. 

 

Another way of statistically modelling the object’s colour information is to explicitly 

fit a probability distribution to the colour data, based on the assumption that the 

chosen distribution is a close approximation of the real one that generated the colour 

data. So in this case, the colour model of the object consists of some set of parameters 

that describe the chosen distribution. This method is referred to as parametric 

statistical colour modelling, while the histogram-based method is an example of a 

non-parametric statistical colour modelling [ELGA02].

For this application, the parametric approach was adopted. An advantage of using the 

parametric approach is that since the distribution is known, established mathematical 

techniques from the field of statistics can be applied to it. A disadvantage is the 

assumption that the chosen distribution is the correct one for the underlying data. 

 

3 That is, the object’s colour data can be seen as arising from a random variable defined in some colour 
space. 
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hue: 

saturation: 

value: 

(a) (b) 

Figure 11.1: Non-parametric statistical colour model based on a HSV-colour histogram. (a) 
The object shown is from the PETS-ICVS dataset, frame #12775; (b) The object is multi-
coloured and therefore the distribution is multimodal (evident from the three main peaks 
highlighted for the hue histogram – red curve). 

11.2 Mixture Models 

 

As mentioned in the previous section, objects are normally multi-coloured and 

therefore their histogram will be multimodal. The common way of handling 

multimodal data is through the use of mixture distribution models [MCLA97 §1.4.3] or 

mixture models for short. A mixture model q(x), for some vector x, is defined as: 

∑
=

=
M

i
ii xpxq

1

)()( π (11.1)

which is a weighted sum of M individual probability distributions pi(x), called 

component distributions, and i are called the mixing weights, with the condition 

1
1

=∑ =

M

i iπ . Therefore, the parameters of the model q(x) consist of the set of weights i

and the individual parameters i of the component distributions: 

),,,,...,( 11 MM θθππθ �= (11.2)

11.2.1 Gaussian Mixture Models 

 

For representing colour data, the individual distributions are often taken to be 

Gaussian (Normal) distributions [RAJA98; GROV98; OR00]. In this case, the mixture is  

called a Gaussian Mixture Model (GMM) or Mixture of Gaussians (MoG).

Theoretically, a GMM with an infinite number of components can model any data 

distribution. Since colour data is multi-dimensional (usually 2 or 3 dimensions), the 

Gaussian components Ni are multivariate distributions [BILM98]. If x = (x1, x2, …, xd) is 

the colour vector with dimensions d, then Ni is defined by: 

1.0

0.0
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where i LV� WKH� PHDQ� RI� WKH� GLVWULEXWLRQ�� DQG� i is the covariance matrix (having 
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with ( j)
2 being the variance of the j’th colour component and j,k is the covariance 

between the j and k’th colour components. FURP� ������� LW� FDQ� EH� VHHQ� WKDW� i is a 

V\PPHWULF� PDWUL[� �WKDW� LV�� T ��� VLQFH� j,k = k,j. In addition, the multivariate 

Gaussian distribution requires the covariance matrix to be positive definite, that is:  

0,0 ≠ℜ∈∀>Σ xxxx d
i

T (11.5)

The parameters of the GMM are now given by: 

),,,,,,,...,( 111 MMM ΣΣ= �� µµππθ (11.6)

In the case of the OmniTracking application, colour data is expressed in the HSV 

colour space and, as mentioned in §11.1, only the hue and saturation values are used 

for the object’s probability colour model, to achieve a level of colour constancy. 

Therefore, the mixture model used for the application consists of bivariate Gaussian 

distributions. If colour values in the HS-space are expressed as x = (xh,xs), then 

for ),( ΣµiN we have: ( ) 
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and simplifying the quadratic in the exponent, yields: 
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Figure 11.2 shows how a GMM models an object’s colours. Colours are expressed in 

the HS-space in polar form with hue xh defining the angle and saturation xs runs from 

0 at the boundary to 1 in the centre, as indicated in Figure 11.2(a). Three component 

distributions are used, fitted automatically, and as can be seen from Figure 11.2(c), the 

components correspond approximately to the 3 main peaks of the histogram (at least 

for the hue) highlighted in Figure 11.1.  

 

(a) (b) 

(c) (d) 

Figure 11.2: Parametric statistical colour model based on a Gaussian Mixture Model. (a) 
Colours of the object (PETS-ICVS dataset, frame #12775) plotted in the HS-space; (b) A 3-
component Gaussian mixture fitted to the colour data; (c) The probability map of the mixture 
q(x); (d) A 3D version of the two lower components of (c) as seen from near the origin. 

The components in Figure 11.2(b) are shown as 3 concentric ellipses, with each 

ellipse representing standard deviations of , 2 , and 3 respectively from the mean. 

These ellipses are called contours of constant probability density and can be used to 

xs

xh

weights: 
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define a threshold for each component, beyond which the probability is set to 0 (to 

avoid working with very small numbers)4. The axes of the N -ellipse are given by: 

11ek λµ ± and    22 ek λµ ± (11.8)

where 1, 2 are the eigenvalues and e1,e2 DUH�WKH�HLJHQYHFWRUV�RI� �
( )

( )
( )12

2
2

2
12

22
2

2
12

22
2

2
1 ,

1
4 σσλ

σσλ
σσσλ −

+−
=±−= i

i

ii e (11.9)

7KH� V\PPHWULF�� SRVLWLYH� GHILQLWH� SURSHUW\� RI� HQVures that > 0. Figure 11.2(c) 

shows the probability of the full mixture q, so the probability that an object’s pixel has 

colour x is given by q(xh,xs), calculated using (11.7) and (11.1). 

 

11.3 Tracking with Colour Models 

 

Given a Gaussian mixture model q(x) describing the colour information of an object, 

the location of the object at time t can be found by simply computing the probability 

for each pixel of the image (that is, computing the probability that the colour of the 

pixel was generated by the GMM) and finding the region in the image with maximum 

probability. Figure 11.3 shows how this is applied to an image using the colour 

mixture model of Figure 11.2, where the position of the object can be easily 

identified. Some areas of the image have a constant value – this is because of the 

application of a 3 threshold for each of the distribution components. 

 

In this example, the object’s main colour (yellow) is similar to that of parts of the 

background (yellowish-white colour of the walls and roof). This results in non-zero 

probability values being assigned to most of the image. Although these are low 

probability values, they can make the location of the maximum-probability region 

harder to find. One way of eliminating this is to use the result from the motion 

detection phase and compute the probability only for foreground pixels [PÉRE02]. The 

result is shown in Figure 11.4(a). An advantage of this method is that the tracker does 

not need to calculate the probability for each image pixel, but only for those labelled 

as foreground. 

4 Note that the exponent term of the multivariate Gaussian distribution has the general form xT� -1)x
(which becomes a quadratic equation in x for the bivariate case). This expression is the Mahalanobis 
distance [MCLA97 §2.6] with the covariance matrix serving to scale each dimension of x and rotate the 
axes to better fit the colour data, which is normally skewed and has different variability in each 
dimension – hence the ellipsoids xT� -1)x=c2.
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(a) (b) 

Figure 11.3: Locating an object by finding the region with highest colour probability. (a) 
The source image from the PETS-ICVS dataset, frame #12790; (b) Probability values 
computed for each pixel of the image (black = highest probability). The colour GMM used 
is the one shown in Figure 11.2 and fitted to the object 15 frames earlier. 

(a) (b) 

Figure 11.4: Combining colour tracking with motion detection. (a) The result from the 
background subtraction algorithm (foreground pixels shown in black); (b) Combined result. 

In addition, temporal constraints could be used to further restrict the area of the image 

to be searched, as the inter-frame movement exhibited by an object should be limited. 

And the object’s size should also change slowly. These constraints also help to 

eliminate the possibility of the tracker ‘jumping’ from one object to another one, 

which happens to have the same colour distribution [RAJA98].
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Given that the object’s position at time t-1 was at image position t-1, then a search 

window is defined on the image, centred on this position. From within this search 

window, only those pixels that belong to the foreground are used (as determined by 

the motion detection algorithm). For this set of foreground pixels R, having position l,

the probability of their colour cl is calculated using the mixture model q. Then the new 

position for the object is estimated to be: 

( )( )




 −+= ∑
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Rl
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Rq 11 )(
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where ( )∑
∈

=
Rl

lcqRq )(  is the total probability of the colour model within R. The extent 

of the object is expressed as: 
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The new position t and the object extent t can then be used to define the next search 

window at time t+1, as shown in Figure 11.5 below. 

 

As in the case of the bounding box used for blob tracking in §10.2, the object extent is 

specified in polar coordinates ( ,r), the range in azimuth and the range in the radial 

distance from the image centre r. Therefore, pixel positions l in (11.10) and (11.11) 

are given as ( ,r) and is expressed as and r.

(a) (b) (c) 

Figure 11.5: Using temporal constraints for the search window.  (a) Search window derived 
from object’s position at time t-1; (b) Probability for foreground pixels within the search 
window; (c) The new object’s position, extent and the search window to be used at time t+1.

11.4 Colour Model Learning 

 

One of the issues with mixture models (and parametric models in general) is 

determining explicitly what model to use for (best explains) a particular data set. In 

search window

r

new search window
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the case of the Gaussian mixture, the model is described by the parameter set , where 

),,,,,,,...,( 111 MMM ΣΣ= �� µµππθ (11.12)

In the majority of cases, the parameter set is not known beforehand, but has to be 

determined automatically from the data itself. This process is known as “learning” the 

model. 

 

An example is learning the parameters of the 3-component mixture model used for the 

object shown in Figure 11.2. The mixture model q(x) defines the probability that a 

particular colour value x is generated by the object’s model. But the mixture model 

depends on the choice of , so it can be written as q(x| ), that is, the probability of 

generating colour x given the parameter set . If X is the dataset of colour values of 

the object in question, where X = {x1, x2, …, xN}, with N being the number of pixels of 

the object, then )...()( 21 θθ NxxxqXq = . And since the colour values are assumed to 

be independent (and identically distributed), this gives: 

∏
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N

i
iN xqxqxqxqXq

1
21 )()(...)()()( θθθθθ (11.13)

Learning the parameters from a dataset X, can be viewed as keeping X fixed in 

(11.13), and letting vary oveU WKH�VSDFH� RI�DOO�SRVVLEOH�SDUDPHWHU�YDOXHV��)LQGLQJ�
that yields the highest probability in (11.13) is equivalent to finding that best 

describes the given dataset X. This is called the process of finding the maximum 

likelihood estimate, and (11.13) can be written in terms of the likelihood function L

(the likelihood of parameter set given the data) [BILM98]:

∏
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ixqXqXL

1

)()()( θθθ (11.14)

and the maximum likelihood process is then described by: 

)(maxargmax XL θθ
θ

= (11.15)

which means, finding = max ∈ WKDW�PD[LPLVHV�WKH�OLNHOLKRRG�IXQFWLRQ�L.

A common technique in statistics is to maximise the logarithm of L( |X) instead of 

working directly with L( |X) as this simplifies things (eliminates the log-of-product 

expression) and it is easy to see that a value of that maximises L will also maximise 

log L:
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Substituting the mixture model defined by (11.1) into (11.16) gives: 
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which is not possible to solve analytically because of the log-of-sum expression 

[FORS02 §18.1.1]. Therefore for colour mixture models, a different approach is required 

for maximising the log-likelihood equation, and hence learning the model. 

 

11.4.1 The Expectation-Maximisation (EM) Algorithm 

 

A popular technique for finding the maximum likelihood estimate is the Expectation-

Maximisation (EM) algorithm [MCLA97]. EM is a general-purpose and powerful 

algorithm used for maximising likelihood functions, especially in the case of 

incomplete data problems. The algorithm was first formally presented in a paper by 

A. Dempster, N. Laird, and D. Rubin in 1976, and has been widely used in diverse 

fields such as astronomy, synthetic aperture radar, and medical imaging. It has also 

been the subject of much research and [MCLA97] quotes a bibliographic list about the 

EM algorithm with more than a thousand papers referenced. 

 

When used for incomplete data problems, the EM algorithm simplifies the likelihood 

function by taking into account the missing data. Normally, incomplete data means 

that elements of some of the data vectors of dataset X cannot be observed. But the 

term ‘missing data’ can also be used to represent model parameters whose value is 

unknown or by artificially adding some variables into the model which are assumed to 

be hidden [SCHA97 §3.2].

The latter definition to missing data (that is, hidden variable) is used for colour 

mixture models. Given a mixture model q(x), made up of M component distributions, 

and dataset X = {x1, x2, …, xn} being the object’s colours, it is assumed that each 

vector xi is generated by one of the component distributions of the mixture model. An 

artificial variable yi is introduced, which specifies which of the M distributions 

generates colour value xi [BILM98]. That is, for xi:
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where yi takes a value between [1..M]. The set of these artificial variables is denoted 

by Y = {y1, y2, …, yN}, their values are assumed to be hidden and so form the ‘missing 

data’. And the dataset X (the set of observable values) is considered to be ‘incomplete’ 

(because the yi variables are not part of the observable values). Combining the two 

into one set gives the ‘complete’ data set Z=(X,Y) and the log-likelihood function is 

now: 
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and substituting (11.18) into (11.19) gives: 
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which means that working with the complete-data log-likelihood log(L( |Z)) is much 

simpler than working with the incomplete-data log-likelihood log(L( |X)), because the 

log-of-sum expression has disappeared by virtue of (11.18) and the introduction of the 

yi variable (the missing data). The EM algorithm, described below, uses the simplified 

complete-data log-likelihood for learning the mixture parameters. 

 

The EM algorithm is an iterative algorithm that basically performs the following two 

steps: 

1. “Guesses” the missing data Y by performing an averaging (calculates the 

expectation). This is called the expectation step, E-step for short. 

2. Estimates (maximises) the parameters by using the guessed values. This is 

called the maximisation step, M-step for short. 

The steps are repeated to improve the estimated value of the parameters .

The algorithm starts with some initial values for the parameters, denoted by 0.

During the E-step, the EM algorithm finds the mathematical expectation value Q of 

the complete-data log-likelihood function log(L( |X,Y)), using parameters t-1 

obtained from the previous iteration of the algorithm. For the purpose of expectation 

calculation, function L can be viewed as being constant in X and in t-1, but variable in 

Y – hence the idea of finding the missing data Y.

( )[ ]11 ,|)|,(log),( −− = tt XYXqEQ θθθθ (11.21)
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The expectation value Q( , t-1) is an expression in that is evaluated during the E-

step in terms of t-1. The M-step then consists of maximising the expectation Q:

( )1,maxarg −= tt Q θθθ
θ

(11.22)

The actual expressions used for the expectation calculation and for argument 

maximisation in (11.21) and (11.22) depend on the probability distribution model 

being used. For this reason, although it is called the EM ‘algorithm’, it can be seen as 

being more of a general-purpose process rather than an algorithm in the strictest sense 

of the word [MCLA97].

For the particular case of the bivariate Gaussian mixture model used for this 

application, the equations of the EM algorithm are given below5.

E-Step: (11.23) 
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where )|( mim xp θ is calculated using (11.7) 

 

M-Step: (11.24) 
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The EM algorithm has several important mathematical properties, such as 

monotonicity, where the likelihood function satisfies the condition L( t) � L( t-1), and 

the guarantee of convergence to at least a local maximum (and possibly a global 

5 The derivation of these equations is not given here. Details can be found in [BILM98].
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maximum) in the parameter space [MCLA97 §§3.2, 3.4]. These two properties can be 

used to test for the termination condition of the EM algorithm by checking the 

complete-data log-likelihood, calculated using (11.20). When the algorithm 

converges, the complete-data log-likelihood does not change any longer. Convergence 

is normally quite rapid and is achieved with a few number of iterations. 

 

The EM algorithm offers other advantages such as: 

• its strong statistical basis and theoretical guarantees on optimality, 

• robustness to noise and highly-skewed data, and 

• its simplicity of implementation. 

 

Among its disadvantages, one can find that: 

• the algorithm may converge to a poor local maximum, 

• although the EM algorithm converges rapidly, the actual number of iterations 

needed for a particular dataset is unknown, 

• computations are unstable when the variances of the probability mixture model 

are close to 0, and 

• the algorithm is hard to initialise, that is, to estimate the initial values of the 

parameters 0.

Figure 11.6 shows the partial results of the EM algorithm while being used to learn 

the colour model of the object shown in Figure 11.2. The model is a 3-component 

Gaussian mixture, and a total of 17 iterations were required for this particular case, 

with the change in the log-likelihood value (shown in Figure 11.7) tested for 

convergence with a precision of 3 decimal places.  

 

11.4.1.1 Selecting the Initial Parameters 

 

As mentioned further above, one of the problems of the EM algorithm is in deciding 

what initial parameter values 0 to use. Normally, the parameters are assigned random 

values. But this suffers from the problem that if the initial choice of values happens to 

be an incorrect one, then the EM algorithm converges to a poor local maximum. This 

is especially important for mixture models because as the number of components 
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increases, so does the number of maxima in the log-likelihood function space6. Some 

applications use the K-means clustering method to get a good initial estimate for the 

parameters 0, but this can be expensive for real-time applications.  

 

Figure 11.6: Learning a colour model using the EM algorithm. Partial results from some of 
the iterations are shown. A total of 17 iterations were required for this model. The colour data 
is for the object of Figure 11.2. 

6 It is easy to see that there are several trivial maxima in the log-likelihood space of mixture models. 
For example, the solutions for the first 2 components ( 1, 2) and ( 2, 1) occur at separate maxima in the 
likelihood space, but as far as the mixture model is concerned the two solutions are equivalent because 
the order of the components within the mixture is not important. Apart from these trivial maxima, there 
are also other maxima, the number of which increases as more components are added to the mixture 
model. 

iteration 1 iteration 3 iteration 5

iteration 7 iteration 9 iteration 11

iteration 13 iteration 15 iteration 17
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Figure 11.7: Convergence of the log-likelihood value of the colour model of Figure 11.6. 

In the case of the OmniTracking application, the mixture parameters are initialised 

with colour values taken from the dataset, that is, the object’s pixels. A pixel is 

selected from the object one for each component, and the component’s mean colour 

values are set to the pixel’s colour values. In addition, the variance of each component 

is set to a large value, while the covariance is initially set to 0. Since neighbouring 

pixels tend to have similar colours, the pixels selected must be a certain spatial 

distance from each other. When tested on the PETS datasets, this initialisation method 

performed satisfactorily, in the sense that the initialisation values (colours) for the 3 

components were distinct from each other. 

 

11.5 Colour Model Update 

 

The appearance of an object changes over time due to several factors such as object 

motion, rotation, light variations, etc. (see §9.2 for more details). As a result, any 

model describing the object starts getting out-of-date unless it is updated on a regular 

basis. This also applies to colour models (on a long-term basis), even though colour is 

usually more robust to many of these changes (§11.1). 

 

In §11.4.1 it was shown that the EM algorithm is a very powerful method for learning 

the initial colour models of objects. This may lead one to think of ‘updating’ an 

object’s colour model by re-using the EM algorithm of §11.4.1 to fit a new model 

over the old one – in other words, by ‘re-learning’ the model. But using the EM 

algorithm for model update can prove to be a computationally intensive process and 

not suitable for real-time applications. Under most circumstances, changes in the 
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colour model of an object are small, which means that only slight adjustments are 

needed; using the EM algorithm means duplicating most of the work done to learn the 

previous model. 

 

From its first introduction in 1976, the EM algorithm has been the subject of 

numerous research and many different variants of the EM algorithm7 have been 

proposed [NEAL98; NG03; THIE01; ORDO02]. Some of these variants were designed with 

speed in mind, others with the aim of allowing incremental learning of the model, etc. 

Most of these variants can be classified into roughly two categories, those methods 

that concentrate on improving (modifying) the E-step, and those that improve 

(modify) the M-step. Generally, variants that deal with the E-step tend to offer the 

greatest advantages as regards to computational speed, faster convergence rates and 

incremental behaviour, mainly because of the two steps, it is the E-step that is affected 

most by the number of data elements present [THIE01].

One such example is the Incremental EM (IEM) algorithm [NEAL98], which partitions 

the dataset X into blocks. For each data vector x in a block, the IEM algorithm 

performs a partial evaluation of the E-step, and at the end of each block a single M-

step is calculated. The partial evaluation of the E-step is implemented using expected 

sufficient statistics, provided that the probability model being learned is a subfamily 

of the exponential family.

A set of sufficient statistics S is one where all the information that can be gathered 

from the dataset X about the parameters , can also be obtained from the set of 

statistics S alone [SCHA97 §3.2]. And a distribution p([_ ), with parameters 

 � 1� 2�«� k), belongs to the exponential family if it can be written as: 

( )∑ ==
k

i c
ba

xtf
efxfxp 1

)()(
)()()|(

θθθ

where fa(), fb(), fc() and t() are real-valued functions. 

and the set ( ))(),...,(),( 21 xtxtxtT k= is the set of sufficient statistics. 

(11.25)

In the case of the bivariate Gaussian mixture model used for this application, the 

individual components are given by (11.7), where it is quite easy to see that this is an 

exponential function, with the exponent term consisting of a quadratic equation in 

7 Sometimes, the original EM algorithm is referred to as the generic EM algorithm or the standard EM 
algorithm, when compared to the other variants. 
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vector x, and the sufficient statistics for this case are [NG03]:
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Using the above sufficient statistics, the Incremental EM algorithm is given below: 

Partial E-Step: (11.27) 
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where )|( mim xp θ is calculated using (11.7). 

accumulate T1, T2 and T3 using (11.26) 

 

M-Step: (11.28) 

N

Tt
m

1=π

1

2

T

Tt
m =µ
















−=Σ

1

22
3

1

)(1
T

TT
T

T

T
t
m

As mentioned before, the partial E-steps are performed on a block of data, with a 

single M-step evaluated at the end of each block. Then the iterations of the IEM 

algorithm proceed as follows: 

For each data block B: (11.29) 

For all xi∈B:

perform partial E-step on xi

perform M-step at end of block B

If the M-step were to be evaluated after every partial E-step (that is, size of block B is 

set to 1), then the IEM algorithm is known as the Online EM algorithm and this is the 

fastest of all the EM algorithms. On the other hand, if the M-step is performed after 

all the data vectors have been read (that is, only one block is used with size N equal to 

that of the dataset), then the IEM algorithm is reduced to the standard EM algorithm 

(though using sufficient statistics instead of the equations in §11.4.1), and no speed 

improvements are obtained. But as the size of block B gets smaller, the IEM algorithm 

becomes more susceptible to the order of the data vectors x and the algorithm may no 
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longer guarantee convergence to a local maximum. Selecting the size of data block B

is a compromise between speed and guaranteed convergence. In the case of the 

OmniTracking application, the pixels of an object in an image frame are considered to 

constitute a new data block B.

11.6 Implementation Issues 

 

The complete high-level algorithm used by the OmniTracking application is given in 

Figure 11.8 below. 

 

Figure 11.8: Colour Tracking Algorithm 

is a full update needed? 

no 

use the IEM algorithm to update 
the object’s colour model (§11.5).

is update needed? 
yes

no 

t= t+1

no 

Learn the colour model for the new object 
using the EM algorithm (§11.4.1). 

new object(s) detected 

yes

Pre-calculate probability map for the colour 
model of the object to be used as a LUT. 

Initialise objects list O. 

image frame t

For each object o∈O use the previous position of the object to 
define a search window in the new image (§11.3). 

Apply background subtraction result as a mask to the search 
window (§8.7.4). 

Use the object’s probability map as a look-up table (LUT) to 
calculate the probabilities within the search window. 

Calculate the new position and spatial extent of the object and 
mark the pixels belonging to this object in a membership map. 

yes
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As mentioned in §11.2.1, the colour model chosen for the OmniTracking application 

uses a bivariate Gaussian mixture model with the colour values expressed as vectors 

of the form (hue,saturation), or HS for short, and full covariance matrices are used for 

the component distributions to allow for correlation between hue and saturation. It 

was decided to use a mixture of 3 components since this was found to provide a good 

representation for the PETS datasets. The improvement to the model from adding 

more components was small compared to the added computational costs. The initial 

parameter values for the component distributions are chosen from the object’s pixels 

directly as explained in §11.4.1.1.  

 

Calculating the probability value for a pixel is an expensive operation, involving 

computing the inverse of the covariance matrix, its determinant, and the exponential 

term, and this has to be done for all of the 3 components of the mixture. Therefore, 

once the mixture model for an object is known, a lookup-table (LUT) is created and 

the probability values are computed over the range of the HS-space. An example of 

such a lookup-table, called a probability map, is displayed in Figure 11.9(a), and as 

indicated in 11.9(b), a 3 threshold is used for each component. This helps to improve 

speed, since pixels outside 3 -ellipses will have zero probability and will be skipped 

by later processing steps, but more importantly it eliminates small probability values 

which can be numerically unstable. A bounding box (shown in grey) is also defined 

for each colour model – HS values that fall outside this bounding box will not be 

looked-up in the probability map. 

 

(a) (b) 

Figure 11.9: Probability Map used as a look-up table. (a) The probability map; (b) the data 
points and colour model used for the maps. 
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As described in §11.3, when searching for an object in frame t, a search window is 

used which is derived from the object’s position in frame t-1. This window defines a 

range in azimuth and a radial range within the omnidirectional image, and its size is 

determined from the object’s spatial extent at t-1, expressed in terms of and r. This 

window is defined to have a size of 3 by 3 r and a certain minimum size (defined by 

the maximum motion expected within a frame) is used to ensure a meaningful size. 

 

While tracking objects in image frame t, the OmniTracking application maintains a 

global map, called a membership map. Pixels that belong to object O1 (that is, those 

pixels that have a non-zero probability within the search window of O1), are labelled 

as being members of O1 in the membership map. This is done for all the objects that 

are currently being tracked. Any remaining regions of foreground pixels that belong to 

none of the current objects, are then considered to be new objects, their colour model 

is created, and they are added to the object list O.

The standard EM algorithm is used for learning the colour model of a new object, but 

as mentioned in §11.5, the model update is performed using the Incremental EM 

(IEM) algorithm. Each object has an internal counter that indicates how long it has 

been (in number of frames) since the last update of the colour model. When this 

counter reaches a threshold, the colour model is updated using the IEM algorithm and 

the counter is reset. Currently the update is defined to occur every 15 frames.  

 

The IEM algorithm, in contrast to the standard EM algorithm, is not guaranteed to 

converge to a local maximum, and it is also susceptible to the order in which colour 

values are processed. Because of this, errors in the model can start to accumulate over 

time until the model no longer provides a correct representation of the object’s colour 

information. The OmniTracking program solves this problem by occasionally running 

the EM algorithm to re-learn the model. By default, this happens every 1000 frames 

and is user-configurable. 

 

Finally, when objects are no longer visible in the omnidirectional image, the objects 

are deleted from the list O, using the same deletion rules as the ones described in 

§10.4.3. 
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11.7 Results 

 

The colour-based tracking method as implemented for the OmniTracking application 

produces good results and is especially robust to partial occlusion. In both of the 

PETS datasets, this method is able to track most of the objects successfully from the 

time they are first detected in the omnidirectional image until the moment they are no 

longer in view.  

 

An example of tracking through partial occlusion from the PETS-ICVS dataset is 

shown in Figure 11.10 below. It can be seen from the probability map (full screen 

version shown here, that is, without limiting it to the search window and to 

foreground pixels only) that the colour probability is able to discriminate between the 

two objects. Unlike in the case of the blob tracking method (§10), the two objects do 

not affect each other (unless they have a common colour). 

 

Figure 11.11 shows an example from the PETS-ICVS dataset where two objects share 

a common colour and one is fully occluded by the other, and is recovered successfully 

after the occlusion events, even though it has quite low chromaticity values (the object 

is basically white). In this case, the common colour is skin colour, but the mixture 

component that roughly represents skin colour has very low weight (skin area is 

small) and on its own, the probability is below the mixture threshold, which explains 

why the object is lost in images 5 and 10. In image 7, one can also just discern the 

search window being used to track the object. Although the tracker incorrectly 

matches the common skin-areas of the other objects with this one, the position of the 

object (indicated by a red dot in the figure) is still quite accurate. 

 

Finally, in the PETS-2001 dataset, some objects are lost just after they are first 

detected. After some investigation, this was found to be caused by the small size of 

the objects in question (mostly <100 pixels), resulting in a poor colour model being 

generated by the EM algorithm. Figure 11.12 displays one such case. After the object 

is lost, then it is reacquired as a separate object and is successfully tracked for the rest 

of the sequence. 
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1. 1. 

2. 2. 

3. 3. 

4. 4. 

5. 5. 

6. 6. 

(a)  (b) 

Figure 11.10: Results: Tracking through Partial Occlusion. (a) The probability map (full 
image version) for the object being tracked; (b) The bounds of the tracked objects. 
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1. 2. 

3. 4. 

5. 6. 

7. 8. 

9. 10.

11. 12.

Figure 11.11: Results: Tracking through Occlusion. The pixels belonging to the object 
are brighter. These images were generated from the membership map (§11.6) that the 
program uses during tracking.  
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(a) (b) 

Figure 11.12: Results: Poor Colour Model. (a) The colour model built 
from a size just above the detection threshold of 50 pixels; (b) The object 
being tracked (PETS-2001 dataset) 

11.8 Conclusion 

 

This chapter described how the colour-based tracking method was implemented for 

the OmniTracking program. The colour information of objects (hue and saturation) is 

modelled statistically using a mixture model consisting of 3 Gaussian distributions. 

The Expectation-Maximisation (EM) algorithm is used to automatically learn the 

colour model from the object’s pixel values, and the model is periodically kept up-to-

date using a faster version of the EM algorithm called the Incremental EM (IEM) 

algorithm. The chapter also described how the tracking is performed through a 

probabilistic search using the colour model and how temporal constraints are used to 

limit the search area and provide tracking consistency. This method achieves very 

good tracking results, especially when objects are partially occluded. Compared with 

the blob tracking method of §10, this is the method of choice. 
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