
156

Chapter 11

Colour-based Tracking

This chapter describes the implementation of the Colour-based Tracking method. The

first section gives an overview of how colour information can be used to track objects

by means of statistical methods. This is followed by a description of how colour is

modelled using a Gaussian Mixture Model and how the Expectation-Maximisation

(EM) algorithm is used to fit the model to an object. The tracking procedure is

described next, together with how the object mixture model is updated to handle

variations in the appearance of the object. The chapter finishes off with some results

obtained from this method.

11.1 Colour Models

It was shown in the previous chapter (§10.5) that colour information is a very useful

feature for representing objects. Colour is robust to changes in the appearance of an

object such as deformations, rotation, and scaling. And by using certain types of

colour spaces, the colour information about an object can be made independent of any

light variations in the scene1 – such as the HSV colour space, which separates the

chromaticity values from the illumination value (others are given in §8.7.2). In

addition, since colour is a global property of the object, it is also robust to partial

occlusion2. Another advantage to using colour is the ease with which it can be

extracted from an image (compared to finding other features like corners, edges, etc.)

1 This property is referred to as colour constancy [HORP99].
2 This may not be strictly true for multi-coloured objects, since during partial occlusion, one or more of
the colours may be hidden from view, leaving only some of the colours visible.

157

Objects in the world are normally multi-coloured, either consisting of parts made up

of individual colours or else having a multi-coloured texture. Therefore representing

an object by single values such as the average colour is not a useful model. One

possibility is to use a histogram H, made up of a certain number N of bins, like the

model used in §10.3.4 for blob tracking. If the histogram is normalised so that

∑ =
=N

i
iH

1
1)(, then the histogram can be interpreted statistically3 as a discrete

probability density function, where H(i) gives the probability p(c) that a given pixel of

the object takes the colour c. An example is shown in Figure 11.1.

When using histograms as colour models for an object, there is the question of how

many bins to use. Using a large number of bins gives a higher resolution but at the

cost of being more prone to error from camera noise – since for error , it becomes

more probable that colour c, affected by noise c± , falls into one of the neighbouring

bins c-1 or c+1 instead of in c. Using a small number of bins leads to a poor

probability resolution (colours are ‘averaged’ out) as well as increasing the impact of

quantisation errors.

Another way of statistically modelling the object’s colour information is to explicitly

fit a probability distribution to the colour data, based on the assumption that the

chosen distribution is a close approximation of the real one that generated the colour

data. So in this case, the colour model of the object consists of some set of parameters

that describe the chosen distribution. This method is referred to as parametric

statistical colour modelling, while the histogram-based method is an example of a

non-parametric statistical colour modelling [ELGA02].

For this application, the parametric approach was adopted. An advantage of using the

parametric approach is that since the distribution is known, established mathematical

techniques from the field of statistics can be applied to it. A disadvantage is the

assumption that the chosen distribution is the correct one for the underlying data.

3 That is, the object’s colour data can be seen as arising from a random variable defined in some colour
space.

158

hue:

saturation:

value:

(a) (b)

Figure 11.1: Non-parametric statistical colour model based on a HSV-colour histogram. (a)
The object shown is from the PETS-ICVS dataset, frame #12775; (b) The object is multi-
coloured and therefore the distribution is multimodal (evident from the three main peaks
highlighted for the hue histogram – red curve).

11.2 Mixture Models

As mentioned in the previous section, objects are normally multi-coloured and

therefore their histogram will be multimodal. The common way of handling

multimodal data is through the use of mixture distribution models [MCLA97 §1.4.3] or

mixture models for short. A mixture model q(x), for some vector x, is defined as:

∑
=

=
M

i
ii xpxq

1

)()(π (11.1)

which is a weighted sum of M individual probability distributions pi(x), called

component distributions, and i are called the mixing weights, with the condition

1
1

=∑ =

M

i iπ . Therefore, the parameters of the model q(x) consist of the set of weights i

and the individual parameters i of the component distributions:

),,,,...,(11 MM θθππθ �= (11.2)

11.2.1 Gaussian Mixture Models

For representing colour data, the individual distributions are often taken to be

Gaussian (Normal) distributions [RAJA98; GROV98; OR00]. In this case, the mixture is

called a Gaussian Mixture Model (GMM) or Mixture of Gaussians (MoG).

Theoretically, a GMM with an infinite number of components can model any data

distribution. Since colour data is multi-dimensional (usually 2 or 3 dimensions), the

Gaussian components Ni are multivariate distributions [BILM98]. If x = (x1, x2, …, xd) is

the colour vector with dimensions d, then Ni is defined by:

1.0

0.0

159

()
[] []ii

T
i

i

iiii

xx
eNxp d

µµ

π
µ

−Σ−−

Σ
=Σ=

−1

2
1

22

1
),()((11.3)

where i LV� WKH� PHDQ� RI� WKH� GLVWULEXWLRQ�� DQG� i is the covariance matrix (having

GHWHUPLQDQW�_ i|):

()
()

() 



















=Σ

2
,2,1

,2
2

22,1

,12,1
2

1

ddd

d

d

i

σσσ

σσσ
σσσ

�

����

�

�
(11.4)

with (j)
2 being the variance of the j’th colour component and j,k is the covariance

between the j and k’th colour components. FURP� ������� LW� FDQ� EH� VHHQ� WKDW� i is a

V\PPHWULF� PDWUL[� �WKDW� LV�� T ��� VLQFH� j,k = k,j. In addition, the multivariate

Gaussian distribution requires the covariance matrix to be positive definite, that is:

0,0 ≠ℜ∈∀>Σ xxxx d
i

T (11.5)

The parameters of the GMM are now given by:

),,,,,,,...,(111 MMM ΣΣ= �� µµππθ (11.6)

In the case of the OmniTracking application, colour data is expressed in the HSV

colour space and, as mentioned in §11.1, only the hue and saturation values are used

for the object’s probability colour model, to achieve a level of colour constancy.

Therefore, the mixture model used for the application consists of bivariate Gaussian

distributions. If colour values in the HS-space are expressed as x = (xh,xs), then

for),(ΣµiN we have: () 







−

−
Σ

=Σ







=Σ= −

2

2
1

2

2 1
,,,

hhs

hss

shs

hsh
sh σσ

σσ
σσ
σσ

µµµ

and 222
hssh σσσ −=Σ . Substituting the values into (11.3):

[] 








−
−









−

−
−−

Σ
−

Σ
= ss

hh

hhs

hss
sshh

i
x

x
xx

eN µ
µ

σσ
σσ

µµ

π
2

2

2
1

2

1

and simplifying the quadratic in the exponent, yields:

()[]2222)())((2

2
1

2

1 hsshssshhshh

i

xxxx
eN

σµσµµσµ

π

−+−−−−
Σ

−

Σ
= (11.7)

160

Figure 11.2 shows how a GMM models an object’s colours. Colours are expressed in

the HS-space in polar form with hue xh defining the angle and saturation xs runs from

0 at the boundary to 1 in the centre, as indicated in Figure 11.2(a). Three component

distributions are used, fitted automatically, and as can be seen from Figure 11.2(c), the

components correspond approximately to the 3 main peaks of the histogram (at least

for the hue) highlighted in Figure 11.1.

(a) (b)

(c) (d)

Figure 11.2: Parametric statistical colour model based on a Gaussian Mixture Model. (a)
Colours of the object (PETS-ICVS dataset, frame #12775) plotted in the HS-space; (b) A 3-
component Gaussian mixture fitted to the colour data; (c) The probability map of the mixture
q(x); (d) A 3D version of the two lower components of (c) as seen from near the origin.

The components in Figure 11.2(b) are shown as 3 concentric ellipses, with each

ellipse representing standard deviations of , 2 , and 3 respectively from the mean.

These ellipses are called contours of constant probability density and can be used to

xs

xh

weights:

161

define a threshold for each component, beyond which the probability is set to 0 (to

avoid working with very small numbers)4. The axes of the N -ellipse are given by:

11ek λµ ± and 22 ek λµ ± (11.8)

where 1, 2 are the eigenvalues and e1,e2 DUH�WKH�HLJHQYHFWRUV�RI� �
()

()
()12

2
2

2
12

22
2

2
12

22
2

2
1 ,

1
4 σσλ

σσλ
σσσλ −

+−
=±−= i

i

ii e (11.9)

7KH� V\PPHWULF�� SRVLWLYH� GHILQLWH� SURSHUW\� RI� HQVures that > 0. Figure 11.2(c)

shows the probability of the full mixture q, so the probability that an object’s pixel has

colour x is given by q(xh,xs), calculated using (11.7) and (11.1).

11.3 Tracking with Colour Models

Given a Gaussian mixture model q(x) describing the colour information of an object,

the location of the object at time t can be found by simply computing the probability

for each pixel of the image (that is, computing the probability that the colour of the

pixel was generated by the GMM) and finding the region in the image with maximum

probability. Figure 11.3 shows how this is applied to an image using the colour

mixture model of Figure 11.2, where the position of the object can be easily

identified. Some areas of the image have a constant value – this is because of the

application of a 3 threshold for each of the distribution components.

In this example, the object’s main colour (yellow) is similar to that of parts of the

background (yellowish-white colour of the walls and roof). This results in non-zero

probability values being assigned to most of the image. Although these are low

probability values, they can make the location of the maximum-probability region

harder to find. One way of eliminating this is to use the result from the motion

detection phase and compute the probability only for foreground pixels [PÉRE02]. The

result is shown in Figure 11.4(a). An advantage of this method is that the tracker does

not need to calculate the probability for each image pixel, but only for those labelled

as foreground.

4 Note that the exponent term of the multivariate Gaussian distribution has the general form xT� -1)x
(which becomes a quadratic equation in x for the bivariate case). This expression is the Mahalanobis
distance [MCLA97 §2.6] with the covariance matrix serving to scale each dimension of x and rotate the
axes to better fit the colour data, which is normally skewed and has different variability in each
dimension – hence the ellipsoids xT� -1)x=c2.

162

(a) (b)

Figure 11.3: Locating an object by finding the region with highest colour probability. (a)
The source image from the PETS-ICVS dataset, frame #12790; (b) Probability values
computed for each pixel of the image (black = highest probability). The colour GMM used
is the one shown in Figure 11.2 and fitted to the object 15 frames earlier.

(a) (b)

Figure 11.4: Combining colour tracking with motion detection. (a) The result from the
background subtraction algorithm (foreground pixels shown in black); (b) Combined result.

In addition, temporal constraints could be used to further restrict the area of the image

to be searched, as the inter-frame movement exhibited by an object should be limited.

And the object’s size should also change slowly. These constraints also help to

eliminate the possibility of the tracker ‘jumping’ from one object to another one,

which happens to have the same colour distribution [RAJA98].

163

Given that the object’s position at time t-1 was at image position t-1, then a search

window is defined on the image, centred on this position. From within this search

window, only those pixels that belong to the foreground are used (as determined by

the motion detection algorithm). For this set of foreground pixels R, having position l,

the probability of their colour cl is calculated using the mixture model q. Then the new

position for the object is estimated to be:

()()




 −+= ∑

∈
−−

Rl
tltt lcq

Rq 11)(
1 µµµ (11.10)

where ()∑
∈

=
Rl

lcqRq)(is the total probability of the colour model within R. The extent

of the object is expressed as:

() ()[] 




 −−= −

∈
∑ 2

1
2

)(
1

tt
Rl

lt lcq
Rq

µµσ (11.11)

The new position t and the object extent t can then be used to define the next search

window at time t+1, as shown in Figure 11.5 below.

As in the case of the bounding box used for blob tracking in §10.2, the object extent is

specified in polar coordinates (,r), the range in azimuth and the range in the radial

distance from the image centre r. Therefore, pixel positions l in (11.10) and (11.11)

are given as (,r) and is expressed as and r.

(a) (b) (c)

Figure 11.5: Using temporal constraints for the search window. (a) Search window derived
from object’s position at time t-1; (b) Probability for foreground pixels within the search
window; (c) The new object’s position, extent and the search window to be used at time t+1.

11.4 Colour Model Learning

One of the issues with mixture models (and parametric models in general) is

determining explicitly what model to use for (best explains) a particular data set. In

search window

r

new search window

164

the case of the Gaussian mixture, the model is described by the parameter set , where

),,,,,,,...,(111 MMM ΣΣ= �� µµππθ (11.12)

In the majority of cases, the parameter set is not known beforehand, but has to be

determined automatically from the data itself. This process is known as “learning” the

model.

An example is learning the parameters of the 3-component mixture model used for the

object shown in Figure 11.2. The mixture model q(x) defines the probability that a

particular colour value x is generated by the object’s model. But the mixture model

depends on the choice of , so it can be written as q(x|), that is, the probability of

generating colour x given the parameter set . If X is the dataset of colour values of

the object in question, where X = {x1, x2, …, xN}, with N being the number of pixels of

the object, then)...()(21 θθ NxxxqXq = . And since the colour values are assumed to

be independent (and identically distributed), this gives:

∏
=

==
N

i
iN xqxqxqxqXq

1
21)()(...)()()(θθθθθ (11.13)

Learning the parameters from a dataset X, can be viewed as keeping X fixed in

(11.13), and letting vary oveU WKH�VSDFH� RI�DOO�SRVVLEOH�SDUDPHWHU�YDOXHV��)LQGLQJ�
that yields the highest probability in (11.13) is equivalent to finding that best

describes the given dataset X. This is called the process of finding the maximum

likelihood estimate, and (11.13) can be written in terms of the likelihood function L

(the likelihood of parameter set given the data) [BILM98]:

∏
=

==
N

i
ixqXqXL

1

)()()(θθθ (11.14)

and the maximum likelihood process is then described by:

)(maxargmax XL θθ
θ

= (11.15)

which means, finding = max ∈ WKDW�PD[LPLVHV�WKH�OLNHOLKRRG�IXQFWLRQ�L.

A common technique in statistics is to maximise the logarithm of L(|X) instead of

working directly with L(|X) as this simplifies things (eliminates the log-of-product

expression) and it is easy to see that a value of that maximises L will also maximise

log L:

165

[]∑∏
==

=




=

N

i
i

N

i
i xqxqXL

11

)(log)(log)(log θθθ (11.16)

Substituting the mixture model defined by (11.1) into (11.16) gives:

[] ∑ ∑∑
= ==














==

N

i

M

m
mimm

N

i
i xpxqXL

1 11

)(log)(log)(log θπθθ (11.17)

which is not possible to solve analytically because of the log-of-sum expression

[FORS02 §18.1.1]. Therefore for colour mixture models, a different approach is required

for maximising the log-likelihood equation, and hence learning the model.

11.4.1 The Expectation-Maximisation (EM) Algorithm

A popular technique for finding the maximum likelihood estimate is the Expectation-

Maximisation (EM) algorithm [MCLA97]. EM is a general-purpose and powerful

algorithm used for maximising likelihood functions, especially in the case of

incomplete data problems. The algorithm was first formally presented in a paper by

A. Dempster, N. Laird, and D. Rubin in 1976, and has been widely used in diverse

fields such as astronomy, synthetic aperture radar, and medical imaging. It has also

been the subject of much research and [MCLA97] quotes a bibliographic list about the

EM algorithm with more than a thousand papers referenced.

When used for incomplete data problems, the EM algorithm simplifies the likelihood

function by taking into account the missing data. Normally, incomplete data means

that elements of some of the data vectors of dataset X cannot be observed. But the

term ‘missing data’ can also be used to represent model parameters whose value is

unknown or by artificially adding some variables into the model which are assumed to

be hidden [SCHA97 §3.2].

The latter definition to missing data (that is, hidden variable) is used for colour

mixture models. Given a mixture model q(x), made up of M component distributions,

and dataset X = {x1, x2, …, xn} being the object’s colours, it is assumed that each

vector xi is generated by one of the component distributions of the mixture model. An

artificial variable yi is introduced, which specifies which of the M distributions

generates colour value xi [BILM98]. That is, for xi:

166

∑
=

=
M

m
immi xpxq

1

)()(π simplifies to)()(iyyi xpxq
ii

π= (11.18)

where yi takes a value between [1..M]. The set of these artificial variables is denoted

by Y = {y1, y2, …, yN}, their values are assumed to be hidden and so form the ‘missing

data’. And the dataset X (the set of observable values) is considered to be ‘incomplete’

(because the yi variables are not part of the observable values). Combining the two

into one set gives the ‘complete’ data set Z=(X,Y) and the log-likelihood function is

now:

() ()[]∑
=

===
N

i
iii yqyxqYXqYXLZL

1

)()|(log)|,(log),|(log)|(log θθθ (11.19)

and substituting (11.18) into (11.19) gives:

()[]∑
=

=
N

i
iyy xpZL

ii
1

)|(log)|(log θπθ (11.20)

which means that working with the complete-data log-likelihood log(L(|Z)) is much

simpler than working with the incomplete-data log-likelihood log(L(|X)), because the

log-of-sum expression has disappeared by virtue of (11.18) and the introduction of the

yi variable (the missing data). The EM algorithm, described below, uses the simplified

complete-data log-likelihood for learning the mixture parameters.

The EM algorithm is an iterative algorithm that basically performs the following two

steps:

1. “Guesses” the missing data Y by performing an averaging (calculates the

expectation). This is called the expectation step, E-step for short.

2. Estimates (maximises) the parameters by using the guessed values. This is

called the maximisation step, M-step for short.

The steps are repeated to improve the estimated value of the parameters .

The algorithm starts with some initial values for the parameters, denoted by 0.

During the E-step, the EM algorithm finds the mathematical expectation value Q of

the complete-data log-likelihood function log(L(|X,Y)), using parameters t-1

obtained from the previous iteration of the algorithm. For the purpose of expectation

calculation, function L can be viewed as being constant in X and in t-1, but variable in

Y – hence the idea of finding the missing data Y.

()[]11 ,|)|,(log),(−− = tt XYXqEQ θθθθ (11.21)

167

The expectation value Q(, t-1) is an expression in that is evaluated during the E-

step in terms of t-1. The M-step then consists of maximising the expectation Q:

()1,maxarg −= tt Q θθθ
θ

(11.22)

The actual expressions used for the expectation calculation and for argument

maximisation in (11.21) and (11.22) depend on the probability distribution model

being used. For this reason, although it is called the EM ‘algorithm’, it can be seen as

being more of a general-purpose process rather than an algorithm in the strictest sense

of the word [MCLA97].

For the particular case of the bivariate Gaussian mixture model used for this

application, the equations of the EM algorithm are given below5.

E-Step: (11.23)

() ()
()∑

=

−−

−−

−

−−
− == M

m

t
mim

t
m

t

iyiiy
t

iy
t

i

t

iyiiy
t

iyt
ii

xp

xp

xp

xp
xyp

1

11

11

1

11
1

|

|

)|(

|
),|(

θπ

θπ
θ

θπ
θ

where)|(mim xp θ is calculated using (11.7)

M-Step: (11.24)

∑
=

−=
N

i

t
i

t
m xmp

N 1

1),|(
1 θπ

where),|(θixmp is calculated using the E-step result with yi=m

∑

∑

=

−

=

−

=
N

i

t
i

N

i

t
ii

t
m

xmp

xmpx

1

1

1

1

),|(

),|(

θ

θ
µ

()()

∑

∑

=

−

=

− −−
=Σ

N

i

t
i

N

i

Tt
mi

t
mi

t
i

t
m

xmp

xxxmp

1

1

1

1

),|(

),|(

θ

µµθ

The EM algorithm has several important mathematical properties, such as

monotonicity, where the likelihood function satisfies the condition L(t) � L(t-1), and

the guarantee of convergence to at least a local maximum (and possibly a global

5 The derivation of these equations is not given here. Details can be found in [BILM98].

168

maximum) in the parameter space [MCLA97 §§3.2, 3.4]. These two properties can be

used to test for the termination condition of the EM algorithm by checking the

complete-data log-likelihood, calculated using (11.20). When the algorithm

converges, the complete-data log-likelihood does not change any longer. Convergence

is normally quite rapid and is achieved with a few number of iterations.

The EM algorithm offers other advantages such as:

• its strong statistical basis and theoretical guarantees on optimality,

• robustness to noise and highly-skewed data, and

• its simplicity of implementation.

Among its disadvantages, one can find that:

• the algorithm may converge to a poor local maximum,

• although the EM algorithm converges rapidly, the actual number of iterations

needed for a particular dataset is unknown,

• computations are unstable when the variances of the probability mixture model

are close to 0, and

• the algorithm is hard to initialise, that is, to estimate the initial values of the

parameters 0.

Figure 11.6 shows the partial results of the EM algorithm while being used to learn

the colour model of the object shown in Figure 11.2. The model is a 3-component

Gaussian mixture, and a total of 17 iterations were required for this particular case,

with the change in the log-likelihood value (shown in Figure 11.7) tested for

convergence with a precision of 3 decimal places.

11.4.1.1 Selecting the Initial Parameters

As mentioned further above, one of the problems of the EM algorithm is in deciding

what initial parameter values 0 to use. Normally, the parameters are assigned random

values. But this suffers from the problem that if the initial choice of values happens to

be an incorrect one, then the EM algorithm converges to a poor local maximum. This

is especially important for mixture models because as the number of components

169

increases, so does the number of maxima in the log-likelihood function space6. Some

applications use the K-means clustering method to get a good initial estimate for the

parameters 0, but this can be expensive for real-time applications.

Figure 11.6: Learning a colour model using the EM algorithm. Partial results from some of
the iterations are shown. A total of 17 iterations were required for this model. The colour data
is for the object of Figure 11.2.

6 It is easy to see that there are several trivial maxima in the log-likelihood space of mixture models.
For example, the solutions for the first 2 components (1, 2) and (2, 1) occur at separate maxima in the
likelihood space, but as far as the mixture model is concerned the two solutions are equivalent because
the order of the components within the mixture is not important. Apart from these trivial maxima, there
are also other maxima, the number of which increases as more components are added to the mixture
model.

iteration 1 iteration 3 iteration 5

iteration 7 iteration 9 iteration 11

iteration 13 iteration 15 iteration 17

170

-11.5

-11.3

-11.1

-10.9

-10.7

-10.5

-10.3

-10.1

-9.9

-9.7

-9.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Figure 11.7: Convergence of the log-likelihood value of the colour model of Figure 11.6.

In the case of the OmniTracking application, the mixture parameters are initialised

with colour values taken from the dataset, that is, the object’s pixels. A pixel is

selected from the object one for each component, and the component’s mean colour

values are set to the pixel’s colour values. In addition, the variance of each component

is set to a large value, while the covariance is initially set to 0. Since neighbouring

pixels tend to have similar colours, the pixels selected must be a certain spatial

distance from each other. When tested on the PETS datasets, this initialisation method

performed satisfactorily, in the sense that the initialisation values (colours) for the 3

components were distinct from each other.

11.5 Colour Model Update

The appearance of an object changes over time due to several factors such as object

motion, rotation, light variations, etc. (see §9.2 for more details). As a result, any

model describing the object starts getting out-of-date unless it is updated on a regular

basis. This also applies to colour models (on a long-term basis), even though colour is

usually more robust to many of these changes (§11.1).

In §11.4.1 it was shown that the EM algorithm is a very powerful method for learning

the initial colour models of objects. This may lead one to think of ‘updating’ an

object’s colour model by re-using the EM algorithm of §11.4.1 to fit a new model

over the old one – in other words, by ‘re-learning’ the model. But using the EM

algorithm for model update can prove to be a computationally intensive process and

not suitable for real-time applications. Under most circumstances, changes in the

171

colour model of an object are small, which means that only slight adjustments are

needed; using the EM algorithm means duplicating most of the work done to learn the

previous model.

From its first introduction in 1976, the EM algorithm has been the subject of

numerous research and many different variants of the EM algorithm7 have been

proposed [NEAL98; NG03; THIE01; ORDO02]. Some of these variants were designed with

speed in mind, others with the aim of allowing incremental learning of the model, etc.

Most of these variants can be classified into roughly two categories, those methods

that concentrate on improving (modifying) the E-step, and those that improve

(modify) the M-step. Generally, variants that deal with the E-step tend to offer the

greatest advantages as regards to computational speed, faster convergence rates and

incremental behaviour, mainly because of the two steps, it is the E-step that is affected

most by the number of data elements present [THIE01].

One such example is the Incremental EM (IEM) algorithm [NEAL98], which partitions

the dataset X into blocks. For each data vector x in a block, the IEM algorithm

performs a partial evaluation of the E-step, and at the end of each block a single M-

step is calculated. The partial evaluation of the E-step is implemented using expected

sufficient statistics, provided that the probability model being learned is a subfamily

of the exponential family.

A set of sufficient statistics S is one where all the information that can be gathered

from the dataset X about the parameters , can also be obtained from the set of

statistics S alone [SCHA97 §3.2]. And a distribution p([_), with parameters

 � 1� 2�«� k), belongs to the exponential family if it can be written as:

()∑ ==
k

i c
ba

xtf
efxfxp 1

)()(
)()()|(

θθθ

where fa(), fb(), fc() and t() are real-valued functions.

and the set ())(),...,(),(21 xtxtxtT k= is the set of sufficient statistics.

(11.25)

In the case of the bivariate Gaussian mixture model used for this application, the

individual components are given by (11.7), where it is quite easy to see that this is an

exponential function, with the exponent term consisting of a quadratic equation in

7 Sometimes, the original EM algorithm is referred to as the generic EM algorithm or the standard EM
algorithm, when compared to the other variants.

172

vector x, and the sufficient statistics for this case are [NG03]:

∑
=

=
N

i
ixpT

1
1)|(θ , ∑

=

=
N

i
ii xxpT

1
2)|(θ , ∑

=

=
N

i

T
iii xxxpT

1
3)()|(θ (11.26)

Using the above sufficient statistics, the Incremental EM algorithm is given below:

Partial E-Step: (11.27)

calculate ()∑
=

−−− =
M

m

t
mim

t
m

t
i xpxp

1

111 |)|(θπθ

where)|(mim xp θ is calculated using (11.7).

accumulate T1, T2 and T3 using (11.26)

M-Step: (11.28)

N

Tt
m

1=π

1

2

T

Tt
m =µ
















−=Σ

1

22
3

1

)(1
T

TT
T

T

T
t
m

As mentioned before, the partial E-steps are performed on a block of data, with a

single M-step evaluated at the end of each block. Then the iterations of the IEM

algorithm proceed as follows:

For each data block B: (11.29)

For all xi∈B:

perform partial E-step on xi

perform M-step at end of block B

If the M-step were to be evaluated after every partial E-step (that is, size of block B is

set to 1), then the IEM algorithm is known as the Online EM algorithm and this is the

fastest of all the EM algorithms. On the other hand, if the M-step is performed after

all the data vectors have been read (that is, only one block is used with size N equal to

that of the dataset), then the IEM algorithm is reduced to the standard EM algorithm

(though using sufficient statistics instead of the equations in §11.4.1), and no speed

improvements are obtained. But as the size of block B gets smaller, the IEM algorithm

becomes more susceptible to the order of the data vectors x and the algorithm may no

173

longer guarantee convergence to a local maximum. Selecting the size of data block B

is a compromise between speed and guaranteed convergence. In the case of the

OmniTracking application, the pixels of an object in an image frame are considered to

constitute a new data block B.

11.6 Implementation Issues

The complete high-level algorithm used by the OmniTracking application is given in

Figure 11.8 below.

Figure 11.8: Colour Tracking Algorithm

is a full update needed?

no

use the IEM algorithm to update
the object’s colour model (§11.5).

is update needed?
yes

no

t= t+1

no

Learn the colour model for the new object
using the EM algorithm (§11.4.1).

new object(s) detected

yes

Pre-calculate probability map for the colour
model of the object to be used as a LUT.

Initialise objects list O.

image frame t

For each object o∈O use the previous position of the object to
define a search window in the new image (§11.3).

Apply background subtraction result as a mask to the search
window (§8.7.4).

Use the object’s probability map as a look-up table (LUT) to
calculate the probabilities within the search window.

Calculate the new position and spatial extent of the object and
mark the pixels belonging to this object in a membership map.

yes

174

As mentioned in §11.2.1, the colour model chosen for the OmniTracking application

uses a bivariate Gaussian mixture model with the colour values expressed as vectors

of the form (hue,saturation), or HS for short, and full covariance matrices are used for

the component distributions to allow for correlation between hue and saturation. It

was decided to use a mixture of 3 components since this was found to provide a good

representation for the PETS datasets. The improvement to the model from adding

more components was small compared to the added computational costs. The initial

parameter values for the component distributions are chosen from the object’s pixels

directly as explained in §11.4.1.1.

Calculating the probability value for a pixel is an expensive operation, involving

computing the inverse of the covariance matrix, its determinant, and the exponential

term, and this has to be done for all of the 3 components of the mixture. Therefore,

once the mixture model for an object is known, a lookup-table (LUT) is created and

the probability values are computed over the range of the HS-space. An example of

such a lookup-table, called a probability map, is displayed in Figure 11.9(a), and as

indicated in 11.9(b), a 3 threshold is used for each component. This helps to improve

speed, since pixels outside 3 -ellipses will have zero probability and will be skipped

by later processing steps, but more importantly it eliminates small probability values

which can be numerically unstable. A bounding box (shown in grey) is also defined

for each colour model – HS values that fall outside this bounding box will not be

looked-up in the probability map.

(a) (b)

Figure 11.9: Probability Map used as a look-up table. (a) The probability map; (b) the data
points and colour model used for the maps.

175

As described in §11.3, when searching for an object in frame t, a search window is

used which is derived from the object’s position in frame t-1. This window defines a

range in azimuth and a radial range within the omnidirectional image, and its size is

determined from the object’s spatial extent at t-1, expressed in terms of and r. This

window is defined to have a size of 3 by 3 r and a certain minimum size (defined by

the maximum motion expected within a frame) is used to ensure a meaningful size.

While tracking objects in image frame t, the OmniTracking application maintains a

global map, called a membership map. Pixels that belong to object O1 (that is, those

pixels that have a non-zero probability within the search window of O1), are labelled

as being members of O1 in the membership map. This is done for all the objects that

are currently being tracked. Any remaining regions of foreground pixels that belong to

none of the current objects, are then considered to be new objects, their colour model

is created, and they are added to the object list O.

The standard EM algorithm is used for learning the colour model of a new object, but

as mentioned in §11.5, the model update is performed using the Incremental EM

(IEM) algorithm. Each object has an internal counter that indicates how long it has

been (in number of frames) since the last update of the colour model. When this

counter reaches a threshold, the colour model is updated using the IEM algorithm and

the counter is reset. Currently the update is defined to occur every 15 frames.

The IEM algorithm, in contrast to the standard EM algorithm, is not guaranteed to

converge to a local maximum, and it is also susceptible to the order in which colour

values are processed. Because of this, errors in the model can start to accumulate over

time until the model no longer provides a correct representation of the object’s colour

information. The OmniTracking program solves this problem by occasionally running

the EM algorithm to re-learn the model. By default, this happens every 1000 frames

and is user-configurable.

Finally, when objects are no longer visible in the omnidirectional image, the objects

are deleted from the list O, using the same deletion rules as the ones described in

§10.4.3.

176

11.7 Results

The colour-based tracking method as implemented for the OmniTracking application

produces good results and is especially robust to partial occlusion. In both of the

PETS datasets, this method is able to track most of the objects successfully from the

time they are first detected in the omnidirectional image until the moment they are no

longer in view.

An example of tracking through partial occlusion from the PETS-ICVS dataset is

shown in Figure 11.10 below. It can be seen from the probability map (full screen

version shown here, that is, without limiting it to the search window and to

foreground pixels only) that the colour probability is able to discriminate between the

two objects. Unlike in the case of the blob tracking method (§10), the two objects do

not affect each other (unless they have a common colour).

Figure 11.11 shows an example from the PETS-ICVS dataset where two objects share

a common colour and one is fully occluded by the other, and is recovered successfully

after the occlusion events, even though it has quite low chromaticity values (the object

is basically white). In this case, the common colour is skin colour, but the mixture

component that roughly represents skin colour has very low weight (skin area is

small) and on its own, the probability is below the mixture threshold, which explains

why the object is lost in images 5 and 10. In image 7, one can also just discern the

search window being used to track the object. Although the tracker incorrectly

matches the common skin-areas of the other objects with this one, the position of the

object (indicated by a red dot in the figure) is still quite accurate.

Finally, in the PETS-2001 dataset, some objects are lost just after they are first

detected. After some investigation, this was found to be caused by the small size of

the objects in question (mostly <100 pixels), resulting in a poor colour model being

generated by the EM algorithm. Figure 11.12 displays one such case. After the object

is lost, then it is reacquired as a separate object and is successfully tracked for the rest

of the sequence.

177

1. 1.

2. 2.

3. 3.

4. 4.

5. 5.

6. 6.

(a) (b)

Figure 11.10: Results: Tracking through Partial Occlusion. (a) The probability map (full
image version) for the object being tracked; (b) The bounds of the tracked objects.

178

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

Figure 11.11: Results: Tracking through Occlusion. The pixels belonging to the object
are brighter. These images were generated from the membership map (§11.6) that the
program uses during tracking.

179

(a) (b)

Figure 11.12: Results: Poor Colour Model. (a) The colour model built
from a size just above the detection threshold of 50 pixels; (b) The object
being tracked (PETS-2001 dataset)

11.8 Conclusion

This chapter described how the colour-based tracking method was implemented for

the OmniTracking program. The colour information of objects (hue and saturation) is

modelled statistically using a mixture model consisting of 3 Gaussian distributions.

The Expectation-Maximisation (EM) algorithm is used to automatically learn the

colour model from the object’s pixel values, and the model is periodically kept up-to-

date using a faster version of the EM algorithm called the Incremental EM (IEM)

algorithm. The chapter also described how the tracking is performed through a

probabilistic search using the colour model and how temporal constraints are used to

limit the search area and provide tracking consistency. This method achieves very

good tracking results, especially when objects are partially occluded. Compared with

the blob tracking method of §10, this is the method of choice.

	Chapter 11
	Colour-based Tracking

