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Chapter 12 
 

3D Localisation and High-Level Processing 
 

This chapter describes how the results obtained from the moving object tracking 

phase are used for estimating the 3D location of objects, based on the assumption of 

motion along the ground plane. The object tracking results are also used for creating 

‘virtual cameras’ that automatically track objects as they move across the 

omnidirectional camera’s field-of-view. Finally, the program performs some 

rudimentary summarisation of the tracking results and saves the output to disk. 

 

12.1 3D Localisation 

 

Determining the 3D position of objects from images is the main purpose of the field 

of stereo vision, where the environment is observed from two (or more) different 

viewpoints, and from the acquired images, the 3D structure of the surrounding 

environment can be inferred [TRUC98 §7.1]. When only one camera is available, a 

limited amount of 3D information can be extracted from the image if some domain 

constraints are known. A commonly used constraint is the assumption that motion 

takes place on some planar surface, normally called the ground-plane. This 

assumption is not unreasonable in many situations because most man-made 

environments consist of planar terrains (for example, roads, rooms). 

 

For linear cameras, estimating the position by using the ground plane is normally 

achieved through the simple use of a projective transformation (known also as a 

homography) [FORS02 §15.1.2]. This defines a mapping from the 2D ground-plane (in 

the 3D world) to the 2D appearance of the ground-plane in the image. Creating this 
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transformation, requires the knowledge of at least 4 world points and their 

corresponding points in the image. 

 

The geometry of catadioptric cameras is more complicated than that of linear cameras, 

and 2D planar surfaces in the world are not projected into a planar (linear) 

representation by a catadioptric camera (see §6.4) – therefore projective 

transformations cannot be used. But the problem of 3D localisation can be simplified 

for omnidirectional images if another constraint is used in addition to that of the 

ground-plane. This constraint is based on the assumption that the omnidirectional 

camera’s axis is oriented perpendicularly to the ground-plane. This is a reasonable 

assumption because catadioptric cameras have a 360° ‘horizontal’ field-of-view, 

which in most set-ups, is made to coincide with the horizon. 

 

Distance is estimated by finding the ‘lowest’ point of an object in the omnidirectional 

image (which by the ground-plane constraint, should be the point of contact of the 

object with the ground). This image point is then back-projected from the image to the 

ground-plane using the single viewpoint constraint of the catadioptric camera (§2.4) 

and the mirror equation – this is illustrated in Figure 12.1 below. Knowing the 

position of one world point and its equivalent image position is then sufficient for 3D 

localisation1. The back-projection calculation is performed through a pre-calculated 

look-up table, created during the calibration phase of the program (§7.4.4). 

 

Figure 12.1: 3D localisation by means of back-projection from omnidirectional images. 

 

Figure 12.2(a) shows the estimated 3D path of several objects as they move across the 

field-of-view of the camera in the PETS2001 dataset. The equivalent path as seen in 

the omnidirectional image is also given in Figure 12.2(b). Inaccuracies in the 3D 

1 Without knowledge of this world point, relative distance estimates (depth) can still be obtained by 
back-projection. 
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positions arise whenever the ground-plane constraint is violated, either because the 

object’s contact point with the ground is not visible (occluded by background 

elements or other objects), or because of noise from the background subtraction and 

tracking algorithms. 

 

(a) (b) 

Figure 12.2: Results of 3D Localisation for the PETS2001 dataset 

 

3D localisation was also attempted for the PETS-ICVS dataset. But in this dataset, the 

ground-plane is not visible and there is no useful ‘contact point’. An attempt was 

made based on detecting the height of the persons as they move across the room and 

using an assumption of an average height, but this proved to be inaccurate because the 

persons are sometimes standing up and sometimes sitting, so the height is not a 

reliable 3D estimator. Unfortunately, no other method could be found for extracting 

accurate depth information without resorting to high-level domain knowledge. 

 

12.2 Automatic Target Tracking with Virtual Cameras 

 

One of the advantages of omnidirectional cameras is their ability to observe large 

fields-of-view and track objects simultaneously and in different parts of the image. 

This is an important property for monitoring and surveillance systems. In many of 

these systems, the end result is intended to be viewed by human beings and therefore 

it would be a useful feature if the system is able to display the targets as they are 

being tracked in a form best suited for human viewing. §6.5 describes how 

perspective views can be generated from omnidirectional images and how this was 
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implemented for the OmniTracking application. An observation was made in §2.4 that 

the process of generating perspective views is similar to placing a ‘virtual’ perspective 

camera at the omnidirectional camera’s single viewpoint, and a control model was 

defined in §6.6.1 that allows the user to manually change the viewpoint of the virtual 

camera at run-time. With the addition of moving object detection and tracking 

algorithms in §§8-11, it is now possible to allow these virtual cameras to be controlled 

automatically by the program itself – a process that will be called automatic target 

tracking in this chapter. 

 

The OmniTracking application supports two different modes of automatic target 

tracking – one is completely automatic and the other is manually-initiated automatic 

tracking. The algorithm that implements these two tracking methods is called the 

camera controller.

12.2.1 Automatic Target Tracking  

 

The behaviour of the camera controller is governed by the idea that there could be 

many objects to track at any one moment in time, while on the other hand, the virtual 

cameras constitute a limited resource. The camera controller keeps an internal queue 

of objects that can potentially be tracked and when a virtual camera becomes 

available, the first object on the queue is allocated to this camera.  

 

When the OmniTracking program starts, a pre-defined number (user-configurable) of 

virtual cameras are automatically opened and made available for use by the camera 

controller algorithm. In addition, while the program is running, the user can open new 

virtual cameras and these will also be added to the pool of virtual cameras that the 

camera controller can make use of. The user can also decide to stop a virtual camera 

from being used by the camera controller (by ‘locking’ the window) or return a locked 

window back to the virtual camera pool (‘unlocking’ the window).  

 

When assigning an object to a free virtual camera, the camera controller selects the 

first object it finds in the queue. Currently no attempt is made at sorting the objects on 

the queue according to some significance measure – this is a limitation of the current 

implementation. 
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12.2.2 Manually-Initiated Automatic Target Tracking  

 

When this method is chosen, the camera controller waits until the user indicates that a 

particular object is to be tracked. Then the camera controller finds the first free virtual 

camera and assigns it to track the object. The user selects objects to be tracked, by 

clicking with the mouse on the omnidirectional image. 

 

Figure 12.3: Different ways of automatically tracking objects 

 

12.2.3 Automatic Camera Control 

 

The camera controller uses the object’s image centroid and spatial extent (bounding 

box) to set the control parameters of the virtual perspective camera, that is, to set the 

pan angle, tilt and zoom (see §6.6.1). It tries to keep the virtual camera centred on the 

object and adjusts the zoom factor so that the object fills a reasonable part of the view 

(vertical field-of-view between 1.5× to 2.5× object’s height). 

 

Because of the presence of noise and errors generated by motion detection, relying 

only on an object’s centroid and size creates jittery camera motion that irritates the 
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user. For this reason, the camera controller uses a method for virtual camera control 

based on simulating the inertia of physical cameras. Each of the virtual camera 

controls is described in terms of an acceleration factor that is continually updated. For 

example, when an object starts moving, the camera takes some time to catch-up with 

the object, thus creating a smooth transition from a stationary state to a moving state.  

 

12.3 Tracking History 

 

The final node in the program’s processing pipeline is the history node (see Figure 

5.4), which receives the tracking results generated by the blob or colour tracker nodes 

and saves the output to disk. The output is in the form of a set of HTML files2, with 

one history file (page) generated for each detected object and a global history file 

acting like the main index page. HTML was chosen because of its simple format, the 

ease of linking pages together and support for embedding images. Information about 

short-lived objects (which most probably are due to noise) is not saved to disk – 

currently, the program uses a simple threshold to identify these objects. For the other 

objects, the node saves a sequence of ‘snapshots’ of the object, with a new image 

added to the history file whenever the object moves a large enough distance. The 

image in which the object had the largest size, is used for the object’s image in the 

main page – the assumption being that this image most probably provides the best 

representation of the object. A sample history from the PETS-ICVS dataset is shown 

in Figure 12.4. 

 

2 Hyper-Text Markup Language (HTML). 
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Figure 12.4: Tracking History results generated by the application and viewed in a web browser. 
 

12.4 Conclusion 

 

This chapter described how the OmniTracking application uses the results from the 

moving object tracking phase for 3D object localisation, assuming movement along 

the ground-plane. Objects can also be automatically tracked using virtual perspective 

cameras and this chapter described the two different modes of operation implemented 

by the program. The chapter then ended with a description of how the tracking history 

of objects is saved to disk. All three of them offer a great potential for further 

improvements and development, for example, domain information could be used by 

the history node to list events such as ‘person walked towards whiteboard’. In the case 

of automatic tracking of objects, the virtual camera controller could assign tracking 

priorities to objects based on some measure of significance, regions of interest define 

within the omnidirectional image or by using rules to dynamically switch a virtual 

camera from one object to another. 
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