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Chapter 5 
 

Implementation Aspects 
 

The application, called OmniTracking, was written using the C++ programming 

language and runs on a PC-based system with Microsoft’s Windows 2000 as the 

operating system. An Intel Pentium processor-based machine is used, to benefit from 

its MMX technology. The application also makes use of Intel’s OpenCV computer 

vision library.  

 

5.1 Requirements of Computer Vision Applications 

 

Generally, computer vision applications put great computational demands on the 

processor and also have high memory requirements. Processing rates must also be 

sustained over long time periods of time, to be able to process video streams in real-

time. Another requirement is for fast I/O when acquiring data from a video camera1

In the early days of computer vision, applications were traditionally implemented on 

dedicated DSP2-based machines. But nowadays general-purpose PCs are becoming 

more powerful, are widely available, relatively inexpensive and are supported by a 

large variety of software tools and hardware peripherals (such as cameras, frame 

grabbers, etc.). In addition, the processors of modern-day PCs are starting to contain 

DSP-like functionality in them (for example, Intel’s MMX technology). So, general-

purpose PCs are being used more frequently for computer vision applications. 

1 In the case of this application, the video streams are not acquired in real-time, but offline video 
streams are used. This shifts the I/O demand on to the disk unit, which needs to be able to achieve the 
necessary sustained data throughput. For example, in the PETS-ICVS dataset, the average size of each 
(compressed) frame is 46Kb. At 24 fps, this means a disk throughput of ~1Mb/sec. – well within the 
reach of modern PCs. 
2 Digital Signal Processors  
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The system used for this thesis (for development and testing), consists of a PC with an 

Intel Pentium III-E 550MHz processor and 384Mb of main memory. 

 

5.2 MMX Technology 

 

Intel developed the MMX technology under the Native Signal Processing initiative for 

its Pentium line of processors [INTEL99]. The word MMX stands for “multi-media 

extensions”, and as the name suggests, it was designed to improve the performance of 

media-based (audio, video) applications, which have a lot in common with computer 

vision applications. A lot of algorithms in computer vision are pixel-based algorithms, 

where the same operation is done on all of the pixels independently in a pixel-by-pixel 

fashion – it is these inner loops that do the pixel-by-pixel processing that cause the 

performance bottleneck. 

 

MMX uses a single-instruction multiple-data (SIMD) approach to exploit data 

parallelism. It packs several pixel values into one register and then performs 

operations on these numbers in parallel. Assuming 8-bit pixels, 8 pixels could fit into 

one of the 64-bit MMX registers and these could be processed in one cycle – a 

performance increase of 8 times [INTEL99]. In reality, the performance increase is less, 

because the processor has to spend some time packing and unpacking the registers. 

[TALL99] reports increases ranging from ×1 to ×4.7 over a different range of signal 

processing algorithms. 

 

Other functionality offered by Intel’s MMX technology that can benefit computer 

vision algorithms is saturation arithmetic (useful for thresholding operations) and a 

multiply-and-accumulate operation (useful for convolution and morphology) 

[LECK98].

But one limitation of the current MMX implementation is that mixing MMX and 

floating-point operations is very costly. The reason is that no new functional unit 

(register set) has been added to the Pentium processor for MMX. Instead MMX shares 

registers with the floating-point unit ([INTEL99] cites backward compatibility reasons). 

The operation of ‘switching’ the registers from floating-point to MMX and vice-versa 

can take up to 50 clock cycles [LECK98]. Trying to keep integer-based calculations 
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separate from floating-point ones in a program, helps to reduce the number of 

switchovers.  

 

For the OmniTracking application, most of the repetitive floating-point calculations 

have been implemented using fixed-point integer arithmetic to avoid this problem and 

because in general integer math is faster than floating-point math. 

 

Starting from the Pentium III processor, Intel extended the MMX technology from 

integer multi-media data to cover also floating-point multi-media data. This was 

marketed under the separate name of Streaming SIMD [INTEL99]. And it was 

implemented properly by using a separate functional unit. Apart from Intel, other 

microprocessor manufacturers, like AMD and Cyrix, were quick to implement similar 

MMX technologies in their processor families. 

 

Unfortunately, it’s not possible for the processor or a compiler to automate how pixels 

are packed and unpacked from the MMX registers, as context information about the 

algorithm is needed. To benefit from this technology, one has to hand-code the 

algorithm, normally by using assembly instructions (as done by  [LECK98] in his tests). 

And existing C++ compilers do not have the necessary language constructs that map 

to MMX operations (except for Intel’s C++ compiler, with its intrinsics feature 

[INTEL99]). But libraries of MMX-optimised functions are starting to become 

available, such as Intel’s Performance Library Suite (PLS) and OpenCV.

5.3 OpenCV Library 

 

The OmniTracking application makes use of the OpenCV library (version Beta 3.1). 

This is an open-source library from Intel, containing many image processing and 

computer vision algorithms, written to take advantage of the MMX technology 

available in the Pentium family of processors [OPENCV].

Some of the different types of functions in the OpenCV library include: low-level data 

structures and image handling utilities, matrix operations, camera calibration 

functions, object recognition functions, etc. There are also separate support modules 

in OpenCV that provide very basic GUI and video acquisition functionality (called 
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HighGUI and cvCam respectively), a scripting language (called Hawk), and several 

miscellaneous tools and utilities.  

 

If available, OpenCV makes use of libraries from Intel’s Performance Library Suite 

(PLS) for some of its internal functions – if not, it defaults to its own (less efficient) 

implementations. The OmniTracking application also calls some of these libraries 

directly (for example for reading JPEG images from disk). Unlike OpenCV, the PLS 

libraries are not open source and are free only for educational and non-commercial 

use. The PLS libraries used are: 

• Intel Image Processing Library (IPL) – provides the low-level image 

functions, 

• Intel Image Processing Primitives (IPP) – provides low-overhead versions of 

IPL functions, 

• Intel JPEG Library (IJL) – provides JPEG de-compression and file 

reading/writing. 

 

Figure 5.1: Libraries 

As with all open source projects, OpenCV is always in a state of flux, some of the 

functionality it provides is of an experimental nature, and the library can be viewed as 

a loose collection of modules, tools and functions. 

 

In general, the main advantages of using OpenCV are: 

• the code makes use of Intel’s MMX technology,  

• the library auto-detects the type of processor and executes code customised to 

that processor, 

OpenCV HighGUI

cvCam

IPL IPP IJL 

OmniTracking application 

OpenCV  
library 

PLS library suite 



47

• it provides a rapid environment for prototyping computer vision algorithms 

(especially with the addition of the support modules and the scripting 

language), 

• the library is open source, 

• OpenCV has an extensive and active community of users that interact through 

a dedicated mail group. 

 

For this thesis, the main benefit of using OpenCV (and its related libraries) was in not 

having to re-create the basic structures for image handling and the availability of 

several low-level operations like edge detection, thresholding, etc. Wherever these 

functions are used in the application, a mention is made in the relevant parts of this 

document. In some other cases, although OpenCV contains the required functions, 

they were not used and the algorithms were ‘re’-implemented for this application – for 

reasons such as to use masks to skip pixels, to use fixed-point integer math rather than 

floating point, etc. 

 

5.4 Windows and Threads 

 

Most computer vision applications can be classified as soft real-time systems,

meaning that the system must produce results within defined time constraints with as 

little latency as possible [CUTL99]3. This depends mostly on the operating system 

being used.  

 

The OmniTracking application runs on a system that uses the Windows 2000 

operating system. This is a general-purpose operating system with the aim to 

maximise the aggregate throughput of a system and achieve a fair sharing of resources 

[MSDN99]. It was not designed with the intention to be a real-time operating system, 

and so is not able to: 

• ensure low-latency and bounded response times, 

• provide predictable time-based scheduling (deadline-based), and 

• provide fine granularity clock and timer services. 

 

But Windows contains mechanisms that allow some form of real-time behaviour: 

3 In comparison, hard real-time systems must have zero latency, since a late response can be 
catastrophic. 



48

• mainly through the use of threads,  

• thread synchronisation  mechanisms, and  

• by setting process and thread priorities. 

 

A Windows process can be assigned to one of a set of priority classes, and within 

each class, threads can be further given different levels of priority. The OmniTracking 

application makes extensive use of threads and thread synchronisation mechanisms, 

and to prevent other “less important” processes from pre-empting the application, the 

process class of the program has been assigned a high priority level.  

 

But the threads within the program were kept at the same priority level as this gives 

better response times to user input and most of the threads are synchronised on each 

other – so eliminating the possibility of one thread excluding the others from running 

for long periods of time. 

 

The reason why Windows 2000 cannot ensure predictable time-based scheduling of 

threads has to do with hardware interrupts. Interrupts always have higher priority than 

applications (even mouse driver interrupts) and when an interrupt occurs, the interrupt 

handler puts the request on the DPC (Deferred Procedure Call) queue. When the 

Windows scheduler is about to switch from executing one thread to another, before 

starting the second thread, it executes all the requests that have accumulated on the 

DPC queue [JONE99]. This can give rise to unbounded time delays since some 

activities, like network I/O, can cause many DPCs to accumulate. In addition, most 

drivers do their (potentially lengthy) background (housekeeping) work through DPCs. 

 

Another factor that causes this unpredictability is the fact that Windows does not have 

a priority inheritance mechanism. A thread that makes a call to a service offered by a 

lower-priority thread can become blocked until the lower-priority thread runs 

[RAMA98]. Some operating system function calls are executed by normal-priority 

threads within Window’s kernel – a high priority user thread that calls such functions 

is slowed down by these system calls. 

 

Despite these problems, in general Windows is able to get near good scheduling 

predictability within deadlines of 10 to 100 milliseconds [RAMA98]. But it may suffer 

from the occasional unbounded responses (‘freezing’ for a few seconds) if large DPC 

queues or system activities kick-in. 
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The other issue that is relevant to the OmniTracking program is that Windows’ timers 

are not of high enough accuracy. The so-called multimedia timers of Windows have 

an accuracy of up to 1 millisecond (ms), but in practice these timers are not constant 

and their beat can vary from 1 to 15 ms (this has to do with the accuracy of the clock 

chipset and the handling by the Windows kernel of clock interrupts) [JONE99].

To achieve constant processing rates (in frames per second), the OmniTracking 

application makes use of the Windows timers for thread scheduling (because of the 

advantage that the thread is blocked until triggered by the timer, utilising no processor 

time). But it also uses the high performance clock available on the Intel processor to 

periodically adjust the timer’s period. This high frequency clock runs at the 

processor’s internal speed with nanosecond accuracy. Every 30 firings of the 

Windows timer, the processor clock is queried and if there is any time discrepancy, an 

allowance factor is added to the Windows timer. From actual test runs, this method 

was found to give accuracies near the 1 millisecond range. 

 

5.5 Application Structure 

 

The main design requirements for the OmniTracking application were to: 

• keep the computer vision algorithms as separate from the GUI code as 

possible, and to 

• adopt a flexible and modular approach that allows different computer vision 

algorithms to be ‘plugged in’ and experimented with.  

 

The program structure adopted is the pipeline model – generally, input data (a video 

stream) is fed into one end of the pipeline, and at the other end, output is produced. 

The pipeline is made up of a set of modular algorithms communicating with each 

other by passing images and data to each other. Another way to view the pipeline is as 

a directed graph, where the pipeline is the graph and the individual modules of the 

pipeline are the nodes of the graph.  

 

The use of a graph-based approach is a popular one in image processing applications 

(and computer graphics) because of its flexibility in allowing different arrangements, 

modularity, prototyping ability (“plugging in” different nodes), and allows for the 

creation of development environments where the specification of the graph structure 
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is done graphically. Examples include Khoros, MIRTIS [NICH98], and DirectShow 

[MSDN99].

Figure 5.2: Pipeline Model 

For the OmniTracking application, it was decided not to use any of the existing 

architectures, but instead develop a new set of classes to implement a simple 

(lightweight) pipeline model.  

 

In this model, a node can accept input data from a number of source nodes and its 

output goes to a number of sink nodes. When a node is created, it spawns a thread and 

this thread does the following task repeatedly: it waits for input from the source 

nodes, then does some processing, and when finished, pushes the output data to the 

sink nodes when they are ready to accept data. This process is illustrated in Figure 

5.3. When a node’s thread is waiting for input or waiting for sending the output, 

thread synchronisation events are used – this causes the thread to block (enters a wait 

state) and so consumes no processor time until it is awakened again when the wait 

condition is satisfied. The ideal performance (and maximum processor utilisation) is 

achieved when the node threads don’t spend any time in wait states. 

 

The program was written in C++, and one of the great features that the C++ language 

offers is class templates (also called generic programming). The code definition of 

the pipeline classes does not specify what type of the data is passed from one node to 

another – it is just an abstract (generic) template parameter that will only be known at 

object instantiation. The use of templates does not incur any run-time overhead or 

suffer from loss of type safety from the compiler [STRO94 §15.11]. This makes the 

pipeline implementation very flexible, generic (is not tied to this particular 

application) and can be easily ported to use other image libraries or data types. 

 

In the case of the OmniTracking application, the pipeline nodes use the IplImage 

data  structure of  OpenCV.  When passing image data from one node to another,  it is 

pipeline

node
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Figure 5.3: Node thread execution timeline 

not possible to ‘copy’ the data (for obvious performance and memory reasons). 

Instead a single memory copy of a particular image is created, and a reference to it is 

passed from one node to the other across the pipeline. To know when an image is no 

longer being used by the nodes and can be safely deleted, a reference counting 

mechanism is used [MEYE96 pp.183-213].

When processing video streams, most of the images created and deleted by the 

pipeline nodes will be of the same type. Therefore to avoid the overhead of memory 
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allocation/deallocation, when an image is no longer in use (its reference count reaches 

zero), it is placed in a memory pool, where it can be re-used later on. 

 

Figure 5.4 shows the pipeline used to implement the OmniTracking application. A 

normal issue that arises in these circumstances is the question of granularity: how to 

split the program into nodes. Ideally the choice should balance flexibility against 

overhead – the overhead in this case being the thread used by each node. Windows 

has a limited-size thread pool [MSDN99]. The program normally uses about 35 threads, 

which should not cause any problems. 

 

In Figure 5.4, some nodes are marked with the symbol k
1

. This means that these 

nodes (mostly sending output to GUI icons) run at a lower ‘priority’ than the other 

nodes. By priority, it means that they don’t run every time they receive an image 

frame from their source nodes, but run every k frames, where k is set to 2×fps.

The node marked with the symbol , will be instantiated either as BlobTracker 

node or as ColourTracker node depending on what value is configured in the 

initialisation file. 

 

All nodes produce output that is consumed by either other nodes or GUI entities 

(icons, windows). In the case of GUI windows, the user may decide to close them or 

the windows may become hidden. It would be a waste of time, if the node in the 

pipeline continues producing the output data at the same rate as before. In these cases, 

the nodes (marked by P in the diagram) reduce their priority dynamically. These 

changes then cascade down the pipeline, as each node checks its sink nodes, finds 

which one is running at the highest rate and adjusts its priority accordingly. 

 

Nodes can be added and removed from the pipeline dynamically while it is processing 

data. This had to be implemented to allow the user to create new perspective and 

panoramic virtual camera windows at run-time. When such a camera is created by the 

user, input to the pipeline is momentarily paused (to allow the pipeline to settle to a 

safe state), new versions of the nodes shown in block c or block d are created 

(dashed outline in Figure 5.4), and these are added to the pipeline. 

 

Finally, Figure 5.5 shows where the pipeline fits in relation to the other modules of 

the program. 
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Figure 5.4: OmniTracking application pipeline 
(symbols used in the diagram are explained in the accompanying text). 

GUI window 

GUI icon 

IconViewer
k

1 P

ViewerNode

P

Perspective 
Dewarper 

P

new nodes dynamically created for multiple views

JPEGReader

SyncNode

IconViewer

ViewerNode GUI window 

GUI icon 

k
1

P

P

Panoramic 
Dewarper IconViewer

ViewerNode GUI window 

GUI icon 

k
1

P

PP

Block c

new nodes dynamically created for multiple views

Block d

BkgSubtracter 

Blob / Colour       
Tracker 

GUI window ViewerNode
P

GUI icon 

IconViewer
k

1 P ViewerNode
P

GUI window 

IconViewer
k

1 P

GUI icon 

History 
Node

Camera 
Controller 

P



54

 

Figure 5.5: System diagram 

 

The chosen pipeline model proved very useful for testing different modules, while the 

application was being developed. As regards to overhead, from some initial tests, the 

pipeline seems to be quite lightweight and does not cause unnecessary delays. More 

rigorous testing will need to be done to verify this and to measure other things such as 

pipeline throughput and latency (time delay between an image entering the pipeline 

and its results appearing at the other end) [NICH98].

There are however several limitations in the current model, including: 

• no time synching between nodes (although the pipeline globally maintains the 

required fps, individual nodes at the same pipeline depth k may get out of 

synch), 

• a node cannot select what data it wants from the source nodes (data subscription 

model), 

• a simpler interfacing between the pipeline nodes and the GUI system (for 

example, combining the nodes IconViewer and ViewerNode). 

 

5.6 Conclusion 

 

This chapter starts with the general requirements of real-time computer vision 

applications. It then discusses the issues that are specific to the OmniTracking 

application, like Windows operating system issues and thread control. The application 

uses the MMX technology that comes with Pentium processors and this is discussed 

in this chapter together with the benefits that MMX offers to computer vision 

applications. The chapter finishes off by describing in detail the structure of the 

program and the processing pipeline model adopted. 
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