
76

 

Chapter 7 
 

Catadioptric Camera Calibration 
 

This chapter is about the calibration of the catadioptric camera, in particular the 

catadioptric system based on the paraboloidal mirror. The method adopted and 

implemented for this thesis is also described. 

 

7.1 Camera Calibration 

 

In computer vision, camera calibration is the process of relating the location of pixels 

in the image to the 3D points in the scene. Calibration can be further divided into 

internal camera calibration and external camera calibration [FORS02 §5.2].

Internal calibration (also called intrinsic calibration) determines the internal geometry 

of the camera system, which is usually represented as a set of camera parameters, 

including, the focal length, principal point, pixel aspect ratio and skew. The process of 

internal calibration can be viewed as determining the ‘deviation’ of the actual image 

plane from an idealised image plane according to the camera model chosen (example, 

the ideal image plane of the pinhole camera model). On the other hand, external 

(extrinsic) calibration determines the mapping between the pixels, expressed in the 

camera’s internal reference frame, to the 3D coordinates of the scene points in some 

world coordinate system. This is usually expressed by means of a rotation and a 

translation. 

 



7.2 Catadioptric Camera Calibration 

 

In the case of catadioptric systems, the internal geometry consists of both the mirror 

and the conventional camera (sensor) used to capture the view. This adds further 

parameters to the system that need to be calibrated – that is, in addition to the internal 

parameters of the conventional camera, there is also the shape of the mirror and the 

relative position of the conventional camera with respect to the mirror. Figure 7.1 

illustrates some of these parameters. 

 

Figure 7.1: Calibration of the Catadioptric Intern

In general, the internal parameters of a catadioptric camera

• the shape of the mirror (eccentricity )
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• the principal point (image centre) 

• skew of the sensor 
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• camera-to-world rotation  

• camera-to-world translation  

 

The type of calibration performed for a catadioptric camera usually depends on the 

type of application and on what information needs to be ‘extracted’ from the image 

sequence. One can decide to perform only intrinsic camera calibration, or to do both 

intrinsic and extrinsic calibration. For example, in the omnidirectional image-based 

rendering application of [ALIA01b], extrinsic camera calibration was performed, as 

recovering the pose information of the robot is an integral part of the algorithm. On 

the other hand, the round-table meeting application of [STIE02] performs only a limited 

amount of intrinsic camera calibration. The choice of calibration also depends on what 

camera parameters are known, what parameters can be assumed to have a known 

value, etc. For example, the specification of the mirror is normally known beforehand, 

but the orientation of the camera sensor with respect to the mirror may not. Also, the 

latter is susceptible to vibrations that can misalign the camera and the mirror. 

 

Catadioptric camera calibration methods (and camera calibration methods in general) 

can also be grouped into the following two approaches – those that require calibration 

patterns and the self-calibration methods. A calibration pattern is a 3D object with a 

known geometry, possibly located at a known 3D position and usually having some 

features that can be detected accurately (for example, a grid with black & white 

squares).  On the other hand, self-calibrating methods use ‘features’ extracted from 

the image (example, vertical lines) without any prior knowledge of their 3D positions 

in the world. In general, self-calibration offers the following advantages: 

1. calibration can be performed at any place (as long as it contains the features 

needed for calibration), 

2. there is no requirement to set up calibration patterns in the 3D world, and 

3. is less dependant on specific scene structure. 

 

7.2.1 Paraboloidal Mirror Calibration 

 

The use of a paraboloidal mirror simplifies the internal geometry calibration. For a 

paraboloid, eccentricity (the first parameter) is 1 by default, while the focal length ƒ 

is derived from the parabola’s parameter H. More importantly, because of the 

orthographic projection, the camera can be translated freely in relation to the mirror 
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(does not have to coincide with any secondary focus of the mirror). But the 

requirement for the mirror’s optical axis to be parallel to the camera’s optical axis 

must still hold. In addition, when calibrating a paraboloid-based system, one may 

need to take into account the presence of a not truly orthographic system – that is, the 

lens suffering from mild perspective projection1.

7.3 Review of Existing Methods 

 

This section gives a brief description of some of the existing calibration methods used 

for catadioptric cameras. 

 

• The calibration method adopted by [ZHU99] performs only a limited amount of 

internal calibration and recovers mainly the image centre, that is, the principal 

point. They use the assumption that the omnidirectional camera is pointing 

vertically upwards so that vertical lines in the world (their system is used in 

indoor environments) are projected into radial lines in the omnidirectional 

image. All radial lines intersect at one point, the image centre (see Figure 

6.6(b)). Therefore this calibration method requires a minimum of two vertical 

lines. Another advantage is that only one image is needed. 

 

• [GEYE99] use a calibration method designed specifically for a paraboloidal 

mirror to recover the paraboloid’s parameter H, the principal point and the 

pixel aspect ratio. A large grid-like dot calibration pattern is used and straight 

lines are manually selected from this pattern. This method uses the geometric 

property of parabolic projections whereby a set of parallel lines meet at two 

vanishing points on the horizon circle. By taking two different sets of parallel 

lines, and constructing lines between their vanishing points on the 

omnidirectional image, these meet at the image centre (see Figure 6.7(b)). As 

in the previous method, only one image is needed for calibration. 

 

• The method of [GEYE99] was extended in a later paper, [GEYE02], to also 

recover the skew parameter of the sensor. A grid is still used to manually 

select the lines, but the method is based on a slightly different geometric 

1 This effect might manifest itself by the reflection of objects that are slightly behind the reference 
plane of the mirror [ALIA01a].
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property – the fact that world lines are projected as (parts of) circles in the 

omnidirectional image. If spheres are constructed out of these circles, then 

these spheres intersect at a point on the line joining the principal point and the 

mirror’s vertex (at a distance of 2ƒ above the image plane, to be exact). A 

minimum of 5 lines is required for this calibration method (or 3 lines if skew 

and aspect ratio of the sensor are already known). 

 

• [BRAS00] uses a calibration pattern consisting of a hollow cube covered with 

square tiles to calibrate their cone-shaped mirror. Unlike the previous methods 

where the ‘features’ are extracted manually, this method uses edge detection to 

extract the line images needed for calibration. Vertical world lines (mapped to 

radial lines) are found using a Hough Transform-based method, while 

horizontal world lines (mapped to ellipses) are found using a least mean-

square ellipse fitting method. 

 

• The calibration method of [STRE01] works also for non-single viewpoint 

catadioptric systems and defines a projection model that includes rotation and 

translation to handle the orientation of the camera sensor with respect to the 

mirror. The limitation is that the camera intrinsic parameters must be known 

(or found) beforehand. 

 

• [ALIA01a] implement both internal and external calibration for their robot-

based application. Beacons with known 3D positions are used to recover the 

focal length, radial lens distortion, pixel aspect ratio (internal parameters) and 

the orientation of the robot in the world coordinate system (external 

parameters). 

 

• [KANG00] adopt the self-calibration approach (so requiring no calibration 

patterns) and describe two different methods for calibrating a paraboloidal 

mirror. The first one is called the circle-based self-calibration method and is 

used to recover the principal point and the mirror’s parameter H. The basic 

idea is to automatically detect the boundary of the mirror from an 

omnidirectional image. By fitting a circle to this boundary, one can get the 

principal point (centre of the circle), and by knowing the vertical field-of-view 

of the mirror, one can then estimate H (from the radius of the circle). A pre-

defined threshold is used for the detection of the boundary. The advantages of 
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this method are simplicity of implementation, requires only one image and 

there is no need for knowledge of the scene. 

 

• The second self-calibration method used by [KANG00], is based on the 

automatic detection of point features (corners) and the tracking of these points 

from one image to the next while the camera is moved freely around. A 

minimisation technique is then used to recover the principal point, mirror’s 

parameter H, the aspect ratio, and skew of the sensor. 

 

• [FABR02] use a self-calibration method similar to the circle-based method of 

[KANG00]. Their method uses the boundaries of the mirror as a form of 

calibration pattern, so requiring no explicit calibration pattern to be present 

(placed) in the scene. The idea is based on the fact that the external and 

internal boundaries of the mirror lie on two separate and parallel planes 

(horizontal cross-sections of the mirror). The detection of the mirror 

boundaries is done using a simple thresholding operation, followed by an 

ellipse fitting technique. A set of points can then be selected from these 

boundaries and projective mappings can be used to obtain the mirror’s focal 

length ƒ and the orientation of the camera sensor to the mirror.  

 

7.4 Implementation 

 

7.4.1 Method Chosen 

 

The OmniTracking application written for this thesis is used to process 

omnidirectional video streams taken with a paraboloidal-mirror camera. As mentioned 

in §7.2.1, the paraboloid mirror makes the calibration problem easier and it eliminates 

the camera-mirror misalignment problem. In addition, a number of assumptions are 

made about the internal geometry of the catadioptric camera: It is assumed that the 

optical axis of the camera sensor is parallel to that of the mirror and that the camera 

sensor has been calibrated beforehand (that is, for skew and aspect ratio). This leaves 

two unknown parameters: 

• the paraboloidal mirror parameter H, and 

• the principal point. 
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The circle-based self-calibration method (described by [KANG00; FABR02]) was 

chosen both for its simplicity and also because it does not require any particular setup 

in the world. In addition it requires only one image and can be performed directly on 

the video stream captured while the camera is in operation (‘on-line’ calibration).  

 

The main idea of the circle-based self-calibration method is that the external boundary 

of the mirror (as seen in the image) is a ‘feature’ that encodes the position of the 

principal point (see Figure 7.2). And if the vertical field-of-view of the camera is 

known, then parameter H can also be calculated2. The vertical field-of-view is usually 

obtained from the camera manufacturer’s specifications, as in this case.  

 

Figure 7.2: Circle-based Self-Calibration 

7.4.2 Boundary Detection 

 

Because of the assumption that the camera sensor has already been calibrated, and 

skew and pixel aspect ratio can be ignored, then the mirror boundary will appear as a 

circle in the image. The first question that arises is how to detect this boundary circle 

automatically. The answer lies in the observation that the pixels outside of the 

boundary are usually dark, as they don’t receive much light from the surrounding 

scene (usually these parts reflect the camera and mirror mountings and tend to be 

painted black for obvious reasons – avoiding light reflecting off these surfaces into the 

image). [KANG00] use a simple thresholding operation (with a manually selected 

2 The manufacturer normally specifies the focal length ƒ of the mirror. But for the internal camera 
geometry model, ƒ (and its related value H) is usually measured from the image (in pixel units). This 
means that ƒ depends also on the placement of the camera sensor’s image plane in relation to the mirror 
and hence needs to be calibrated. 
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threshold) to separate the pixels. On the other hand, [FABR02] use a more interesting 

approach based on the idea that these ‘outer’ pixels also tend to have low brightness 

variations. They calculate the variance 2 using a frame differencing technique and 

then apply a global threshold on 2 to separate pixels into ‘outer’ and ‘scene’ pixels. 

 

7.4.2.1 Low-Variance Method (first attempt) 

 

The first version of the calibration algorithm implemented for the OmniTracking 

application used the ‘low variance’ idea of [FABR02] to identify the outer pixels, with 

variance being calculated over a 30-second time interval. But the result of this 

algorithm was found to be quite poor due to the presence of noise caused by JPEG 

compression3. The 8×8 pixel blocks used by JPEG for compression introduce artificial 

light variations that mask out the real boundary. This is shown in Figure 7.3 below 

using the result from the PETS-ICVS data set. In addition, even without the JPEG 

problem, the pixel variance was not found to be a very clear discriminator. 

 

7.4.2.2 Iterative Thresholding method (second attempt) 

 

So it was decided to use a thresholding operation directly on the omnidirectional 

image. But instead of using a manually selected threshold (as done by [KANG00]), the 

threshold is calculated using the Iterative Threshold algorithm (also called Optimal 

Threshold). Basically, iterative thresholding assumes that the image consists of pixels 

belonging to two brightness distributions (historically referred to as the ‘background’ 

and ‘foreground’ distributions) and tries to find the best threshold that partitions the 

pixels into these two classes [SONK93 §5.1.1]. The algorithm starts with an initial 

estimate for the threshold and successively refines this value.  

 

For this implementation, the initial estimate T0 is calculated based on the brightness g

of the four corners pixels of the image (with positions {P1,P2,P3,P4}), since it is 

assumed that generally these four pixels are on the outside of the boundary. 

1))(),(),(),(max( 43210 += PgPgPgPgT (7.1)

3 The PETS2001 and PETS-ICVS video stream are both available as a sequence of frames in JPEG 
format. 
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Figure 7.3: JPEG noise affecting pixel variance and boundary detection.  (Variance 
images stretched and inverted for clarity – black represents the highest variance). 

Then the next threshold T1 is obtained by calculating A and B based on the existing 

threshold T0, as shown in the equations below: 
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The process is repeated until Tt+1 and Tt have the same value. 

 

In (7.2) and (7.3), the image is scanned in each iteration to obtain the greyscale value 

g(p) for all pixel positions p. This is very inefficient and, instead, histogram-based 

versions of (7.2) and (7.3) are used, where h represents the histogram function (that is, 

h(g) gives the number of pixels having greyscale value g): 
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At first, the use of iterative thresholding might not appear to be suitable since the 

omnidirectional image does not consist of two clearly defined brightness distributions. 

But looking at the histogram of the images, shows that at least the distribution for the 

‘outer’ pixels is well-defined. In addition, [SONK93] states that this method performs 

very well under a variety of image conditions and works well even if the image is not 

bimodal. Figures 7.4 and 7.5 shows the results obtained for the PETS2001 and PETS-

ICVS sequences respectively. 

 

initialisation: T0 = 1 
iteration 1: T1 = 42 
iteration 2: T2 = 51 
iteration 3: T3 = 54 
iteration 4: T4 = 55 
iteration 5: T5 = 55 

Figure 7.4: Iterative Thresholding for the PETS2001 dataset 

 

7.4.2.3 Edge Detection 

 

After thresholding the omnidirectional image, edges are found by running the Canny 

edge detector algorithm [SONK93 §4.3.5], with the spread value of the Gaussian 

T4
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smoothing filter set to 5 pixels. Instead of writing the algorithm from scratch, the 

Canny edge detector that comes with OpenCV was used (see §5.3). 

 

initialisation: T0 = 5 
iteration 1: T1 = 50 
iteration 2: T2 = 91 
iteration 3: T3 = 101 
iteration 4: T4 = 102 
iteration 5: T5 = 102 

Figure 7.5: Iterative Thresholding for the PETS-ICVS dataset 

 

After running the edge detector, the edge pixels are grouped into edge contours using 

8-neighbour connectivity. The contours are then extracted from the image and 

arranged in a tree-like structure with the external contours at the top of the tree and 

nested contours below them. Again, the algorithm for contour extraction and ordering 

is available in OpenCV. From this tree, only the topmost external contours are used – 

the rest are discarded. The reasoning behind this is that the mirror boundary is usually 

the largest contour in the image, and there should be nothing of ‘interest’ beyond this 

boundary (in the sense that the outer parts are normally uniformly dark and contain 

little structure). Eliminating internal contours also simplifies processing for the circle 

detection algorithm4. The results from the edge detection step are shown in Figure 7.6. 

 

4 The circle detection used for this application does not require grouping of edge pixels into contours, 
as it works directly with the edge pixels. 
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Figure 7.6: Results of the Edge Detection and External Contour Extraction phase. 
(Images have been inverted for clarity)  

.4 Circle Detection 

final phase of the calibration process involves detecting the boundary circle 

our. There are several different methods available in the field of computer vision 

etecting circles, including ellipse fitting [TRUC98 §5.3], Hough Transform [JAIN95 

4] and constrained snakes [SONK93 §8.2].

method chosen for implementation is based on the Hough Transform, because of 

obustness to missing points (discontinuities) on the boundary circle and to the 

ence of noise. Basically, the Hough Transform is a detector for finding curves that 

be expressed analytically in terms of a number of parameters [JAIN95]. For 

ple, in the case of a circle, its equation has three parameters: the centre (x0,y0)

radius r:

( ) ( ) 022
0

2
0 =−−+− ryyxx (7.7)
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These parameters constitute a 3D parameter space and in this space a circle is 

represented as the single point (x0,y0,r). So, given an image pixel (xp,yp), this point 

could have arisen from the set of circles {(x0,y0,r)} that satisfy: 

( ) ( ) 022
0

2
0 =−−+− ryyxx pp

Each pixel ‘votes’ for the set of circles that could have created it, and the votes are 

stored (accumulated) in the 3D parameter space. Then, the peak in this space 

represents the most probable circle. Because of this, the Hough Transform is also 

called a voting algorithm [TRUC98 §5.2.3].

The main problem of this method is that the size of the circle-parameter space is very 

large (768×576×960 for the PETS2001 image5), and in general, the parameter space 

grows exponentially as more parameters are added. Furthermore, reducing the 

granularity of the ‘cells’ within this parameter space reduces the accuracy of circle 

detection. Because of this, it was decided to use the Hierarchical Hough Transform 

[ATIQ99].

Figure 7.7: Hierarchical Hough Transform, with multi-resolution image pyramid and 
reduction of parameter space search. 

 

The basic idea is to perform circle detection using a reduced-size version of the image 

in the first iteration (and therefore a coarse-resolution parameter space). Then the 

approximate position obtained from the first iteration is used to narrow down the 

search region of the parameter space for the second iteration (with a higher resolution 

image). This is done a number of times using an N-level image pyramid (a set of 

increasing resolution images), as shown in Figure 7.7, where the image at level n-1 

has half the resolution of that at level n. A 5×5 Gaussian smoothing filter is used 

5 Assuming the centre of the circle can be anywhere in the image of size 768×576 and the maximum 
detectable circle has a radius bounded by the diagonal size of the image. 
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during the down-sampling of the images and the pyramid’s lowest resolution image is 

limited to one having a width ≥ 50 pixels, while the highest has the same resolution as 

the original image. The determination of the levels in the pyramid is performed 

automatically. For example, for the PETS datasets, a 5-level pyramid was needed. 

 

After iteration n-1, a search is made in the parameter space for the circle with the 

largest number of votes. The centroid of this peak serves as the starting point for the 

next iteration n. The search volume within the parameter space is reduced by a factor 

of 2 during the first N/2 iterations and then by a factor of 4 during the remaining 

ones for a faster convergence. Table 7.1 below shows what parts of the parameter 

space are searched in each iteration for the PETS-ICVS dataset. Against a potential 

space size of 768×576×960, the actual search volume (even when combining all 5 

iterations together) is very small (~0.06%). 

 

Table 7.1: Volume searched in Hough Transform parameter space for the PETS-ICVS dataset 

iteration  1 2 3 4 5 

size of image at pyramid 
level n

48×36 96×72 192×144 384×288 768×576 

volume searched in 
parameter space 

48×36×54 45×33×49 45×33×49 22×17×25 11×9×13 

To guard against possible drifts due to noise (which can cause the real circle to fall 

outside the search volume), a circle is considered a candidate for the best circle, only 

if it has a sufficient number of votes, set to 20% of the circle’s perimeter – in other 

words, if a fifth or more of the circle is visible. 

 

7.4.3 Calculating the Paraboloid’s Parameter H 

 

Once the mirror boundary circle is found by the hierarchical Hough transform, then 

the principal point of the catadioptric camera system is simply set to the centre of this 

circle. The paraboloid’s parameter H is determined from the radius of this circle 

(rboundary) and from the known vertical field-of-view .
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Figure 7.8: Calculating the paraboloidal mirror’s parameter H

From Figure 7.8, it follows that 

boundary

boundary

z

r
=αtan (7.8)

Using the above and the fact that the height zboundary of the mirror surface can be 

calculated using (3.3), then the following is obtained: 
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This is a quadratic equation in H2 and its solution is given by: 
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The negative solution can be ignored and trigonometric identities can be used to 

simplify the solution to: 
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7.5 Results and Conclusions 

 

After determining the principal point and parameter H, some post-processing is 

performed by the calibration algorithm to pre-calculate information that remains fixed 

throughout the operational use of the catadioptric camera. For example, a mask is 

generated to eliminate those pixels that are on the outside of the mirror boundary. The 

mask is used in later algorithms to skip these pixels and so make processing run 

faster. Also, a bounding box for the mirror boundary is calculated – this is passed to 

the JPEG library to uncompress only certain parts when reading the JPEG files from 
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disk6. The azimuth angle and elevation angle of each pixel are pre-calculated and 

stored in look-up tables. 

 

Figure 7.9 below, shows the output from the calibration process, while the full 

algorithm is given in Figure 7.10. To check the correctness of the results, the centre 

points and radii were calculated manually and when compared to the values generated 

by the calibration process, the maximum error was roughly of about ±3 pixels. 
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principal point = (395,287) 
boundary radius = 242 

principal point = (373,269) 
boundary radius = 224 

Figure 7.9: Calibration Results for the PETS datasets. 

 the circle detector fails to find the circle, then the calibration algorithm exits and 

ports an error. Calibration can also be disabled and the parameters defined manually 

 the initialisation file of the application. 

he calibration method used for the application OmniTracking assumes that the 

irror boundary (or most of it) is visible in the image and that there is a clear-cut 

stinction between scene pixels and pixels that are on the outside of the mirror 

undary. To get some idea of how robust the calibration process, it was decided to 

e the existing PETS datasets to generate simulated views to test for: 

• low-contrast images and non-uniform illumination across the image (Figure 

7.11 (a)-(c)), 

• image noise (Figure 7.11 (d), (e)), 

• partial boundary visibility, including ‘zoomed’ images (Figure 7.11 (f), (g)),  

The bounding box does not touch exactly the mirror boundary because the box was enlarged by 8 
xels as the JPEG reader only decompresses full 8×8 blocks.  

PETS-ICVS TS2001

circle

boundary 
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• offset in mirror position (Figure 7.11 (h), (i)). 

This is far from being a rigorous test, but at least gives some indications of how the 

calibration algorithm may behave in such situations. Results are shown in Figure 7.11. 

 

Figure 7.10: Calibration algorithm 

 

perform iterative (optimal) thresholding on image 

pre-processing  
(converting image to greyscale) 

pre-calculate mask, look-up-tables for efficiency 

perform edge detection  
(using the Canny edge detector) 

post-processing of edge detection result  
(eliminating noise and internal contours) 

perform circle detection using a hierarchical  
Hough Transform algorithm 

has circle detection succeeded? no 

calculate principal point and H

Figure 7.11 
(a) 

 (b)
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Figure 7.11: Calibration tests under various simulated light, noise and visibility conditions. 

boundary 
detection 
failure! 
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