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Chapter 8 
 

Moving Object Detection 
 

One of the main activities of visual perception is that of being aware of what is 

happening in the surrounding world. In most cases, complete knowledge of the 

environment is not required for a sensor to be able to achieve a basic level of 

awareness. And the problem can be reduced to finding out (detecting) those ‘objects’ 

that undergo changes, from the rest of the objects that do not appear to change – the 

latter can be considered to form part of a static ‘background scene’ that can be 

ignored. Within this context, objects that appear to change are labelled foreground 

objects and those that do not are labelled background objects, or collectively as the 

background.

Usually the main reason why objects appear to change is because they move, and so 

the process of detecting changes is also called moving object detection1. There are 

several different techniques available in computer vision for moving object detection. 

The main ones are: 

• Optical flow methods,  

• frame difference methods, and 

• background subtraction methods. 

 

The detection method chosen for the OmniTracking program uses the background 

subtraction technique, since this, amongst others, is well suited for stationary cameras 

– which is the normal case for omnidirectional cameras, since with their large field-

of-view they don’t have to move (rotate) to see the world. 

1 In some computer vision literature, a distinction is made between motion detection and moving object 
detection. Motion detection is defined as determining the changes due to motion (without doing any 
further organisational processing on the changes), while moving object detection involves determining 
the different objects that are moving [SONK93 §14]. For this thesis, the latter is being attempted, so 
explaining the name of the chapter. 
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This chapter first starts with an overview of the other detection methods. Then, the 

background subtraction technique is examined in more detail. This is followed by a 

description of how moving object detection was implemented for the OmniTracking 

program and ends with the results obtained when running the program on the datasets 

mentioned in §4.  

 

8.1 Optical Flow  

 

Optical flow methods use the apparent motion of the image brightness values in a 

sequence of images to estimate the relative motion of objects with respect to the 

camera. This apparent motion of pixels is used to construct a 2D vector field of 

velocities, called a motion field, which can be seen as the 2D projection (on the image 

plane) of the 3D velocity field of the objects in the world [TRUC98 §8.3].

The main advantage offered by the optical flow technique is that it works when both 

the objects and the camera are moving with respect to each other. But optical flow is a 

very computationally intensive and slow process. Another disadvantage is that if the 

camera is stationary, then objects are required to move – if they stop moving, objects 

will have a zero motion field and so are undetectable. 

 

8.2 Frame Difference  

 

These are the simplest methods and consist of comparing two adjacent frames from a 

video stream to find out those pixels that have changed. This is usually done by 

calculating the difference between the brightness values of the pixel in the two 

frames, based on the assumption that changes in brightness are due to real changes in 

the scene. Some threshold is then applied to the differences to eliminate small 

variations due to sensor acquisition noise. The result is a binary image where each 

pixel is labelled as either ‘moving pixel’ or ‘background’. This process can be 

expressed by the following equation: 
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for some threshold and using image frames at time t1 and t2. The image frames can 

be either consecutive (t2 = t1+1), or a certain number n of frames apart. Because of 

the use of adjacent frames, these methods are also called temporal differencing  

[JAIN95 §14.1].

The main advantage, apart from the simplicity, is that frame differencing is very 

adaptive to dynamic environments. This is because the gap between frames t1 and t2 

is very short compared to any (usually slow) changes that might occur in the ‘static’ 

background. On the other hand, a disadvantage is that an object usually does not move 

much from frame t1 to t2 and only parts of the object (the outer parts) will appear as 

moving, as can be seen in Figure 8.1. This is called the foreground aperture problem 

[TOYA99].

Figure 8.1: Frame Differencing technique 
(The images are parts of frames 460 and 465 of the PETS2001 dataset). 

8.3 Background Subtraction  

 

Background subtraction methods can also be loosely classified into the category of 

difference-based methods (like frame differencing), but instead of using adjacent 

frames and finding the differences between the two, a background model is used. 

Each frame is ‘compared’ to this background model and the differences from the 

background are found. The main requirement for background subtraction methods is 

that the camera remains stationary; else the background model will become invalid2.

2 Although there are some implementations where background subtraction methods have been adapted 
to be used for PTZ (pan-tilt-zoom) cameras. Such as the Appearance Sphere application, quoted in 
[YAMA02], which builds a background model for a PTZ camera. But these add complexity, require 
precise calibration and camera synchronisation and can be computationally expensive. 

t2
t1
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There are several different variants of the background subtraction technique, as 

described in the next section. 

 

8.3.1 Simplest Form – Mean and Global Threshold Method 

 

In its simplest form, the background model consists of an image of what the empty 

scene (that is, with no moving objects) is expected to look like. Each frame is then 

subtracted from the background image B and a threshold operation is applied (using 

the value for all image pixels). 
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Figure 8.2: Background Subtraction technique – the basic idea. 

Compared to frame differencing, background subtraction methods have the advantage 

of detecting the whole object (see Figure 8.2). But their main disadvantage is that they 

are very sensitive to dynamic changes in the scene (that is, the background model can 

become out-of-date).  

 

In this section it was mentioned that the background image consists of an image of the 

empty scene. But in most cases, it’s not possible to get such an image beforehand. 

Especially for busy outdoor environments, like the one mentioned in §4.2 and being 

used for this project. Also, the ideal case is for the background model to be built 

automatically without human intervention. The simplest way of building a 

background image is to take the average of several frames: 
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The idea behind the use of averages has its origins in the 19th century, when it was 

discovered in photography that, by taking photos with very long exposures, moving 

objects are eliminated from the scene [FRIE97]. The time duration of n frames used to 

build the background image is usually called the training phase or initialisation phase 

of background subtraction. 

 

8.3.2 Handling Noise – Normal Distribution Method 

 

One of the limitations of the previous method is the use of the global threshold for 

determining whether a pixel value is similar to the value expected from the 

background model or not. Assuming a constant scene, the variation observed for a 

background pixel over a period of time should only be caused by camera noise, which 

is usually modelled by a normal distribution with zero mean Nnoise(0, 2) for that 

particular pixel [ELGA99].

Figure 8.3: Background Subtraction technique – normal distribution model. 

Adding the camera noise to the pixel’s mean value from the background model, the 

pixel’s variation can then be modelled by N( , 2). So, together with form the 

background model B, and is calculated during the training phase using the following 

equation ( is still calculated using (8.3)): 
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8.3.3 Handling Background Motion – Mixture of Gaussians Method 

 

The assumption so far has been that the background scene does not change. But it can 

happen that background elements show some movement, for example, trees moving 

in the wind in outdoor environments. This ‘uninteresting’ motion should still be 

classified as belonging to the background. The brightness variations exhibited by 

these pixels is multimodal and is best handled by using a mixture of Gaussian 

(normal) distributions [STAU99]. The mixture model M is defined as: 

∑
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),( σµπ (8.6)

where k is the number of component distributions used (normally ranging from 3 to 

5), Ni is the ith individual normal component distribution and i is its (mixing) weight, 

with  1
1

=∑ =

k

i iπ .

The basic idea of the mixture model is that the different distributions will each model 

a particular background element that the pixel happens to result from (in the case of a 

moving tree, a pixel can at one time be the light coming from the tree and at another 

moment it will be the sky, for example). A separate Gaussian mixture model is used 

for each pixel. The background model is then defined as:  

),...,,,,...,,,,...,,(),( 212121 kkkyxB σσσµµµπππ= (8.7)

In the above equation, the individual parameters are defined for each pixel, that is, 1

should read as 1(x,y), but the (x,y) subscript has been omitted to avoid clutter. 

 

Fitting the mixture model to the pixel data, during the training phase of background 

subtraction, is usually done by maximising some likelihood function of the mixture 

model M. Methods such as the Expectation-Maximisation (EM) algorithm or the K-

means algorithm are usually used for this process [FRIE97; STAU99].

A Gaussian mixture background subtraction is very robust to background scene 

motion. However, fitting the mixture model is computationally expensive, and 

maintaining a model for each pixel requires large amounts of memory. 
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Figure 8.4: Background Subtraction technique – Gaussian Mixture model. 

8.3.4 Post-Processing 

 

The result of background subtraction is a binary image in which each pixel is labelled 

as foreground or background. Normally, some sequence of post-processing operations 

is applied to the result to make the background subtraction algorithm more robust. 

Examples include: morphological operations, cleaning operators (to fill gaps in the 

result and remove noise), and shadow removal. 

 

8.4 Background Adaptation 

 

One of the disadvantages of background subtraction is that the scene can change over 

(normally long) periods of time and so the background model may get out of date (for 

example, illumination changes during the day). To counteract this, the background 

model can be modified at run-time to adapt to any such changes – this is called 

background adaptation, or sometimes background maintenance [TOYA99].

A common technique for performing background maintenance is to employ a moving-

window average, where the background is re-calculated at time t from the previous n

frames (from t-1 to t-1-n). This requires the previous n samples for each pixel to be 

stored.  

 

A better alternative is to use the temporal integration approach, where the background 

model is updated using the following general equation: 
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where is called the integration parameter (or blending parameter). More 

specifically, for the single normal distribution method, (8.8) is implemented as 

follows: 
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In the case of the Gaussian mixture model, the same blending function can be applied 

to the distribution component that best matches (supports) the pixel. Alternatively, the 

mixture model is updated using a completely different procedure, such as an 

incremental version of the EM algorithm [FRIE97].

The parameter ranges from 0 to 1 and determines how responsive is the background 

model to change. A large value means that a higher contribution from the current 

pixel value is added to the background model Bt and the contribution of the older 

values (Bt-1) is reduced. At any time t, the reduction of the contributions of 

background Bt follows the sequence: 
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It is clear that this sequence forms a weighted sum of previous pixel values with the 

weight t)1( α− being an exponential function. For this reason, the background update 

process is called an exponential forgetting process with α1 being the time constant of 

the process [FRIE97].

Figure 8.5: Exponential forgetting for background update. 
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8.4.1 Types of Background Update 

 

Normally, update of the background model is only performed for those pixels which 

at any time t are labelled as background by the detection process. This implies that 

background update is done as the last step of the background subtraction process, after 

the detection and labelling phase is finished. This selective type of background update 

helps to increase the accuracy of detection, since foreground objects will not corrupt 

the background model. 

 

But problems may occur if the decision of whether a pixel is background or not is 

incorrect. If the background of a pixel changes and it is incorrectly labelled as 

foreground, this may lead to its background model never to be updated and hence 

causes persistently incorrect decisions to be taken by the detection algorithm. This is a 

deadlock situation  [ELGA99].

One way of solving the deadlock problem is to do a blind update – updating all the 

pixels regardless of whether they are foreground or not. The disadvantage of this is 

the increase in detection errors. 

 

A compromise between selective and blind update, is to use two blending parameters, 

one for background pixels and the other for foreground. Generally, the parameter for 

foreground pixels is set to a slower rate of integration [BOUL99].
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8.5 Review of Applications using Background Subtraction 

 

This section gives a brief review of some applications that use the background 

subtraction technique for moving object detection, with special attention to those 

using omnidirectional cameras. More applications can be found in [MCIV00; TOYA99].

• [BOUL99] use background subtraction for an omnidirectional camera-based 

surveillance application named LOTS. Background subtraction is performed 

on the raw omnidirectional image. Two separate background models are used, 
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in cascade fashion. The primary background consists of a single normal 

distribution, ),(1
tt

st
tB σµ= , and is updated using separate foreground and 

background parameters (see §8.4.1). The second background is only applied 

to pixels labelled as foreground by the first background model, and it is 

updated using nd
ttfrg

nd
t ByxfB 22

1 )1(),( αα −+=+ , if ),(2 yxfB t
nd

t − is below 

some threshold, or ),(2
1 yxfB t

nd
t =+ otherwise. 

• Colour is used for background subtraction in the application described in 

[CUTL98]. Separate averages are kept for the colour components (RGB colour 

space) with the background model consisting of: ),,( B
t

G
t

R
ttB µµµ= . A pixel is 

labelled as foreground if it satisfies the condition: 

σµ kyxfyx
BGRc t

c
t >−∑ ∈ ),,(

),(),( , where is estimated beforehand. 

• The W4 application of [HARI98], uses a background model consisting of: 

),,( maxmin deltat fffB = , where the values are the maximum, minimum, and 

maximum difference found in the set of pixel values during the training phase. 

A pixel is labelled as foreground if either of the conditions 

),(),(),( max yxfyxfyxf deltat >− or ),(),(),( min yxfyxfyxf deltat >− is true. 

The background is updated using the selective update approach (§8.4.1). 

• A Gaussian mixture model is used by [STAU99] for modelling the background, 

with 3 to 5 component distributions and using an online K-means algorithm 

for fitting the mixture model to the training data. In this application, a 

variation of the blind background update type is used, and background update 

is done before the foreground is detected. If the pixel value matches a 

component distribution (is within 2.5 ), then that component’s parameters i,

i, and� i are updated using temporal integration (8.8). The other components’ 

parameters are left unchanged. If no component matches the pixel’s value, the 

least probable component is deleted and replaced with a new component 

which has ),(
),(, yxftyxti =µ ,

),(, yxtiσ set to a large value, and low 
),(, yxtiπ . For 

moving object detection, the component distributions in the mixture model are 

sorted in order of their probability of occurrence, and the first L of these are 

chosen to represent the background. If a pixel does not fall within 2.5 of any 

of these L distributions, it is labelled as foreground. 
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• [HUAN02] use background subtraction for an omnidirectional-based application 

called NOVA, used for tracking people in a room. Due to the simplified nature 

of the indoor environment, background subtraction is performed on the 

panoramic image obtained from unwrapping the raw omnidirectional image 

(unlike the LOTS application mentioned further above). The single normal 

distribution method is used, with the addition that the background model is 

augmented with the brightness distortion and chrominance distortion CD 

values (background model Bt=( t, t, t, CDt)). The last two are used for doing 

shadow detection as a post-processing step to background subtraction. The 

differences between the image and the background panoramic image are 

collapsed to a 1-D profile – by accumulating a histogram of pixel differences 

in each column of the panorama. A global threshold is then applied to each 

column to see if enough pixels within that column were labelled as 

foreground. 

• [ZHU99] also use background subtraction for an indoor environment-based 

application captured with an omnidirectional camera. Similarly to the previous 

application, background subtraction is performed on the dewarped panoramic 

image. A combination of background image subtraction and frame 

differencing is used. The results from background subtraction s(x,y) and frame 

differencing d(x,y) are combined at a region level rather than at a pixel level, 

with the pixel (x,y) of region R being accepted as foreground if the condition 

[ ]),(min),(
),(

ii
Ryx

yxdyxs
ii ∈∀

≥ is satisfied.  

• [YAMA02] uses background subtraction for omnidirectional images, in which 

the background is modelled with )noise)2sin(,( ×+= ktB tt πωσµ , where the 

term )2sin( tπωσ models the flicker of fluorescent light and CRT screens, and 

the noise×k factor represents the camera sensor noise. If the condition: 

noise)2sin(noise)2sin( ×++≤≤×−− kt(x,y)fkt ttt πωσµπωσµ is sat-

isfied, then the pixel is labelled as background. Temporal integration is used to 

update the background model. 

• [JABR00] implement a background subtraction method that combines colour 

and edge information. The background is modelled by: ),,,( CCCC
t VHB σµ=

for C ∈ (R,G,B), where H is the horizontal edge map and V the vertical one 
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obtained from the Sobel edge detector. The edge maps of the frame at time t

are subtracted from the edge maps of the background model and the resulting 

edges are classified as: occluding edge, occluded edge or background edge. 

The edge information is combined with the thresholded colour differences to 

get a final measure of change. The idea of using edge information is that this 

usually leads to a more accurate extraction of the boundaries of objects. 

 

8.6 Types and Sources of Detection Errors 

 

Moving object detection is usually the first processing step performed by computer 

vision applications. Any detection errors that occur during this step will propagate to 

later processing phases and affect their results in a negative way. Therefore it is 

important that the algorithms used for moving object detection are as accurate as 

possible and that detection errors are eliminated or minimised.  

 

The accuracy of these algorithms is usually measured by their detection rate – that is, 

how many moving objects in the world they are able to find. And also by the number 

of detection errors they generate – normally expressed in terms of the number of false 

positives and false negatives. A false positive occurs when an algorithm says that a 

certain set of pixels belong to a moving object, when in reality there is no object at the 

indicated position. A false negative occurs when there is a moving object in the scene, 

but the algorithm misses the object and labels its pixels as background [TRUC98 §A.1].

In the case of the background subtraction technique, several conditions can potentially 

give rise to detection errors, and these are briefly mentioned below. The chosen 

background subtraction algorithm should be implemented with these conditions in 

mind, with the aim of trying to achieve a certain degree of robustness against them. 

But, because of their low-level nature (that is, independent pixel-based processing), 

background subtraction techniques may not be able to solve all of the problems, and 

the solution to some of them (if at all possible), may require domain knowledge and 

higher-level processing [TOYA99].

Camera-related problems: 

• Noise objects: Camera noise usually manifests itself as random fluctuations in 

the intensity values of pixels and these may cause the background subtraction 
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algorithm to mistakenly label them as foreground pixels – generating false 

positives. The inclusion of a camera noise model in the background (see 

§8.3.2), helps to reduce this problem. Applying a size filter to the background 

subtraction result is also effective, because noise objects tend to be small 

[COLL00].

• Incomplete extraction: Camera noise can also cause an object not to be fully 

differentiated from the background, leaving gaps especially in the boundary of 

the object. In the worst case, an object may become fragmented. Applying 

morphological operations on the background result can alleviate this problem. 

• Registration errors: The basic assumption for background subtraction 

techniques is that the camera is stationary. But in some cases the camera may 

suffer from vibrations, for example, when objects come very close to the 

camera or due to wind in outdoor scenes. Camera motion can cause the 

background to get misaligned with respect to an image and the wrong 

background values to be used. One way of minimising this problem is to 

implement some form of automatic registration that brings the background and 

image back in alignment with each other. 

 

Lighting problems: 

• Gradual light changes: The appearance of outdoor background scenes is 

affected by the slow change of illumination caused by daylight3. This may also 

affect indoor scenes, where windows are present. This is normally solved 

through background adaptation (§8.4).  

• Sudden light changes: Examples include turning the lights on and off (in 

indoor scenes) and the sun moving behind clouds (outdoor scenes). In this 

case, background adaptation might not help, as its rate of update is much 

slower. Sudden light changes affect the whole scene and cause many false 

positives to appear – one can detect them by checking for any abnormal 

increase in the number of foreground objects, and then change or reconstruct 

the background [XU01]. 

3 See [FORS02 §4.1.3] for a graph showing variations of daylight measured at different times of the day 
and under different atmospheric conditions. 
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Shadow-related problems: 

• Object distortion: Shadows can give rise to a number of different detection 

errors. If shadows are labelled as part of the object, then the object’s shape 

will appear distorted, and this distortion can affect later processing phases that 

use geometrical properties for object classification, location estimation, etc. 

[CUCC01]. The effect of shadows can be suppressed by using shadow detection 

algorithms or by using information that is invariant to shadows.  

• Object loss: Shadows can also give rise to object loss when an object’s 

shadow is cast upon another object in the scene. 

• Object under-segmentation: When two objects are close to each other, their 

shadow might cause them to appear to be connected. And the two objects will 

be merged together by the algorithm causing under-segmentation – that is, the 

algorithm reports less objects than in fact there are in the scene [PRAT01].

Shadow suppression reduces this problem. 

 

Object-related problems: 

• Camouflage: The objects themselves, or their behaviour, may be the source of 

errors for background subtraction. Camouflage occurs when parts of an 

object’s colour match the background, so making them indistinguishable from 

the background. This results in object fragmentation. Using clustering or 

morphological operations may help to reduce this problem [COLL00].

• Slow-moving objects: If objects move at a very slow rate, comparable to the 

background adaptation rate, there is the possibility for them to be partially 

‘absorbed’ into the background. This can cause the objects to be lost or may 

give rise to false positives when they eventually move away from the current 

position. Selective background update solves this problem (§8.4.1). Another 

way is through the use of multiple backgrounds [BOUL99].

• Foreground aperture problem: When a uniformly-coloured object moves, it 

can happen that the interior pixels of the object are not detected [TOYA99]. This 

problem is more common for frame differencing methods, but it may also 

occur during background subtraction if an object has been stationary for some 

time. Motion will only be perceived at the edges of the object and not in the 

centre. This causes the object to be fragmented. 
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Background-related problems: 

• Illegitimate motion: Motion by elements of the background scene (example, 

trees swaying in the wind) causes false positives to be detected. Modelling the 

background with multiple distributions, as described in §8.3.3, helps to reduce 

this problem.  

• Moved background objects: Another source for false positives is when 

objects change elements of the scene or remove and introduce new elements 

(for example, a person enters a room and moves a chair from one place to 

another) [STAU99]. Background adaptation can help to reduce this problem, as 

the affected elements will eventually be absorbed into the background. 

• Ghosts: When an object that has been stationary for a long time (and hence 

absorbed into the background) moves away, two objects are detected – the 

moving object and another false positive where the object was originally 

located. This ‘negative object’ is called a ghost [COLL00]. Use of background 

update (except for the selective update type – see §8.4.1) will eventually 

remove the ghost object. It is also possible to use some post-processing logic 

to patch the ‘hole’ left in the background by the object. This problem might 

give rise to deadlock situations if selective background update is used 

[CUCC01].

• Deadlock problem: As mentioned in the previous paragraph, if selective 

background update is used (that is, the background is not update for pixels 

labelled as foreground), false positives tend to persist indefinitely as the 

background of these pixels will not be updated. This problem can be reduced 

by using the other update types mentioned in §8.4.1. 

• Quiet training phase: The background model is normally built automatically 

from the first few image frames captured by the camera. The ideal condition is 

for the scene to be empty of any moving objects to get an accurate background 

representation, but in real-life this is not always possible. The presence of 

moving objects during the training phase of the algorithm will cause some 

corruption of the background, which in turn might give rise to detection errors. 

This problem is also called the bootstrapping problem by [TOYA99].
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8.7 Implementation 

 

The OmniTracking application uses background subtraction for detecting moving 

objects. Background subtraction is performed directly on the omnidirectional image. 

It was decided to model each pixel with a single normal distribution and to perform 

background model adaptation using two different rates, for the foreground and 

background pixels respectively. Background subtraction is performed using colour 

information, as this is a better discriminant than just greyscale. To solve the over-

segmentation issue, shadow detection and removal was implemented by working in 

the HSV colour space. Finally, thresholding-with-hysteresis is performed on the 

background subtraction result to get the classification of pixels into foreground and 

background. 

 

8.7.1 Choosing a Background Model 

 

The first decision that had to be taken was which background model to use. The three 

main types of background models were described in §8.3. The Gaussian mixture 

model is the most accurate of the three because it models each pixel with multiple 

components and it appears that it should be the method of choice. But the problem 

with this background model is its computational cost and large memory requirements.  

 

8.7.1.1 A Test using Mixture Models 

 

To check whether it was worthwhile using this method or not, a test program was 

written that modelled each pixel by a mixture of 3 Gaussians. The EM algorithm was 

used to fit the mixture model to an initial set of 100 frames from the PETS2001 

dataset, selected because this dataset shows evidence of motion in the background – 

swaying trees, moving clouds, slight camera jitter, etc.  

 

Each pixel value f(x,y) was defined by the colour vector (H,S), where H and S are its 

hue and saturation values (as defined in the HSV colour space). Therefore, each 2D 

Gaussian component Ni takes the following parameters: ( ( H, S), ( H
2, S

2), HS ), 

where H
2, S

2 are the individual variances and HS is the covariance. Ni is defined as: 
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The component mixture M of each pixel then consists of (N1, N2, N3� 1� 2� 3). This 

results in a memory requirement of 72 bytes per pixel4. Since the size of each frame of 

the PETS2001 dataset is of 768×576 pixels, the total memory requirement for the 

model is of ~31Mb – this not counting additional values such as thresholds and pre-

calculated values that can be used to make processing run faster. 

 

In addition, running the EM algorithm for each mixture model of every pixel is quite 

expensive, even when a fast version of the EM algorithm is used, for example, the 

Incremental EM algorithm [NG03]. From some initial tests, the standalone background 

subtraction algorithm with a mixture model was running at a rate of between 2 and 3 

frames per second5, and the initial model from the first 100 frames took about 4 

minutes to be built, using the standard EM algorithm. 

 

One way of reducing the runtime costs is to reduce the size of the image. But this is 

not feasible for omnidirectional images, with their already low-resolution. Other 

improvements include assuming zero covariance (independence) between the colour 

components ( HS=0) and using look-up-tables (at the cost of more memory) [STAU99].

At this point it is useful to see how many of these Gaussian components are actually 

used. Figure 8.6 shows the variations of the (H,S) values for six pixels and the number 

of Gaussian components that were required to explain these variations. For example, 

point 1 is a pixel that is sometimes a tree (blue component) and sometimes the sky 

(red component) with weights 0.57 and 0.43 respectively. Figure 8.6(b) shows that for 

most of the pixels, one component is enough. As expected, the pixels needing all 3 

components are the trees and some parts of the cars with their metallic surfaces. Most 

of the road and the grass do not change much. There are some variations in the road 

surface, which are arranged in linear-like structures – these most probably are due to 

JPEG noise (pixels that happen to fall on the ‘edges’ of the 8×8 compression blocks). 

 

4 The values are stored as floating-point variables, which in C++ are represented by 4 bytes. Therefore 
the total consists of 20 bytes for each of the 3 components and the rest for the mixture weights i.
5 This without background update. 
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Most of the background movement seen in this dataset is quite small (a few pixels). 

This is because the background elements in the outdoor scene are at a certain distance 

from the camera, and also due to the low resolution of the omnidirectional camera. In 

general, one may assume that this also holds for most environments in which 

omnidirectional-based surveillance applications are used. The background movements 

manifest themselves mostly as thin linear-like groups of pixels (mostly due to pixels 

that are on the edges between two background elements) – these can be eliminated 

using techniques such as size filtering or thresholding. 

 

Using only hue and saturation for modelling pixels misses objects that happen to have 

the same colour as the background, but different brightness. To detect these objects, 

the brightness V needs to be added to H and S, meaning more memory would be 

required for the mixture model. 

 

For these reasons it was decided not to use the Gaussian mixture model for 

background subtraction, but the single Gaussian distribution model (see §8.3.2). This 

method should give reasonable results while at the same time being fast. But given 

more time, and if the mixture model program is optimised enough6, it could be used 

instead. 

 

8.7.1.2 The Chosen Model 

 

The chosen background subtraction method for the OmniTracking application, models 

each pixel by a normal distribution as follows: 

( )),,(),,,(),(),( 222
),(),( VSHVSHyxyx NNyxB σσσµµµσµ == (8.12)

And the H, S, V colour components are considered to be independent, that is, 

correlation between them is assumed to be zero. Colour is used as this gives a better 

detection rate. The choice of working in the HSV colour space is due to the presence 

of shadows, as will be mentioned in the next section. 

 

6 For example, memory-wise there’s no need to allocate storage for all 3 components, as few pixels will 
require all 3 of them (as can be seen in Figure 8.6(b)). But then, some form of pointer-based memory 
structure will be required, which might add some processing and memory overhead. 
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Figure 8.6: Mixture Models for pixels of the PETS2001 dataset. 

Components needed: 
 black  = 3 components

dark grey = 2 components
light grey = 1 component 

1

2

3

4

5

6

1. Tree & Sky (165,221) 2. Building (270,100)

3. Road (350,200) 4. Grass (475,150)

5. Tree & Window (575,211) 6. Car Window (351,351)
(a) Six selected points and their H,S-scatter 
plots with Gaussian components fitted to 
them. 
 
(b) The picture below shows the number of 
Gaussian components required by the 
pixels to model their backgrounds. 

S

H
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8.7.2 Robustness to Shadow  

 

Shadow is a major source of problems for object detection, as mentioned in §8.6. This 

is especially true within the confines of indoor environments – for example, objects 

tend to be quite close to each other and shadow might cause the objects to appear to 

merge. Figure 8.7 shows some examples taken from the PETS-ICVS dataset. 

 

(a) Object Distortion due to shadow (part of frame 10310). 

(b) Under-Segmentation (merging) due to shadow (frame 11205). 

(c) False positive (shadow object) (frame 10820). 

Figure 8.7: Detection Errors caused by Shadow (columns 1 to 3).  Last column is with 
shadow detection enabled (grey). (Frames from PETS-ICVS dataset). 

For this reason, it was decided that shadow detection should form an essential part of 

the background subtraction process. 

 

But what is shadow? First, it can be seen that when an object is in shadow, its 

appearance (colour) does not depend on the object casting the shadow (blocking the 

light) [FRIE97]. Furthermore, when the object is in shadow, it is not completely dark, 

but is lit by the ambient light generated by the surrounding scene – that is, light 

reflected by the other objects in the scene. Normally, this ambient light is nearly grey 

(colourless), as it is the average of the light reflected by many of the surrounding 

objects [XU01].
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Combining these two observations together: when an element in the background 

scene is in the shadow cast by a moving object, its colour will not change, but its 

brightness will be reduced. Therefore, if background subtraction is to be robust to 

shadows, it must be able to ignore brightness changes when the colour of the 

background remains the same – this is called illumination invariance [XU01]. To do 

this, the algorithm must be able to separate the illumination component of the pixel’s 

light from the chromatic component. This idea is also related to an ability of the 

human vision called colour constancy, where humans are able to assign the same 

colour to an object under different levels of illumination [HORP99].

There are many different ways of expressing the pixel’s brightness that achieve 

illumination invariance. For example: 

• [ELGA02; XU01] use the values (r,g) where ( )BGRRr ++= , )( BGRGg ++=

in the standard RGB colour space. These are invariant to brightness because of 

the normalisation factor in the denominator. 

• [XU01] mentions also the log chromaticity differences ln(R/G) and ln(B/G). 

• For the YUV colour space, the values U/Y, V/Y can be used. 

• The hue H and saturation S values of the HSI or HSV colour spaces. 

• [HORP00] consider colour values as vectors in the RGB colour space and derive 

the brightness differences and chromaticity distortions CD in terms of vector 

geometry. 

More methods can be found in [PRAT01]7.

8.7.2.1 HSV Colour Space and Shadow Detection 

 

For this implementation, it was decided to use the HSV (hue-saturation-value) colour 

space. This space separates the chromaticity values, expressed in terms of hue and 

saturation, from the illumination value V. The values H and S are invariant to 

illumination changes and can be used for suppressing shadows.  

 

A pixel f(x,y) = (H,S,V) is considered to be a shadow pixel, if it satisfies the following 

condition, when compared to its background value (HB,SB,VB): 

7 In the case of background subtraction and many other computer vision applications, shadow is 
considered to be a nuisance and a source of problems. But shadow can be useful in its own right, for 
example, in shape from shading applications [SONK93 §9.3.2].
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≈≈

α
,

(8.13)

The last column in Figure 8.7 shows shadow detection applied to the PETS-ICVS 

dataset. The global parameter in (8.13) defines the maximum amount of shadow 

darkening that can be expected to be present in the scene, that is shadow strength is 

expected to be (1- ). This usually depends on the strength of the illumination 

source(s) and the amount of ambient light present. The reason for including this lower 

limit on brightness reduction is to avoid missing objects that happen to be coloured 

like the background but are darker. For example, the person in Figure 8.7(a) would be 

classified incorrectly as shadow (because the black top appears to be a darker version 

of the white-colour of the wall).  

 

By default, the value for parameter is set to 0.7 (typical of indoor scenes), and is 

user-configurable8. Setting to 1 in (8.13) disables shadow detection. For now, this 

value remains fixed while the program is running. This is a limitation and ideally, this 

value should be adapted depending on the lighting conditions in the scene (shadows 

are stronger at noon).  

 

8.7.2.2 Low Chromaticity Conditions 

 

The HSV colour space is cylindrical in nature and the hue component (the main value 

determining the chromaticity) is derived from the RGB space using [JAIN95 §10.4]:

( ) ))((2

2
cos

2 BGBRGR

BGR
H

−−+−

−−=
(8.14)

From (8.14), it is evident that hue is undefined when R = G = B = 0. In addition, hue is 

unstable when the colour is near the origin of the RGB space, giving rise to wide 

variations in hue for small changes in RGB.  

 

In Figure 8.8, the range of ‘yellow’ colours, defined in RGB as (c,c,0) for c ∈

[0..255], map to the range of colours (60°,1,c) in the HSV colour space (the thick 

black vertical line in the diagram). Adding an error of (± ,0,0) to the RGB colours, 

8 The default value of 0.7 worked well for both of the PETS datasets. 

where 10 ≤< α
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results in the error shown in the figure. For example, if is 1, then the RGB colour 

(c±1,c,0) maps to HSV colour (60°± ,1,c�� ZKHUH� LV� IRXQG� WR� EH9:

12

12
cos

2 ++
+=

cc

cδ . The hue error has a maximum value of 30° when )(1 Vc == ,

showing the instability of hue for low RGB values. 

 

Figure 8.8: Low chromaticity thresholds for HSV colour space 

So, during background subtraction, shadow detection as defined in (8.13), is only 

done if the pixel’s colour satisfies the following thresholds: 

highlow SSandVV <> (8.15)

8.7.3 Background Initialisation  

 

The background model ),(),( HSVHSVyxB σµ= is initialised from the first n frames of 

the video stream, using (8.3) and (8.4). The default duration is set to 32 frames, but 

this value is user configurable. Background initialisation may suffer from the problem 

of having moving objects within the scene while the background is being accumulated 

– this is the case of the PETS2001 dataset, where activity starts from frame 1. But no 

attempt was made at solving this problem as it wasn’t considered critical – to 

compensate for this, one could increase the duration of background initialisation, and 

hope that there are not much slow-moving objects at the time. 

 

The values obtained from background initialisation, are checked to make sure that 

they are above a certain global threshold min. This threshold represents the estimate 

for the camera noise and also ensures that the variances of the background model are 

9 Derived by substituting the RGB colours (c+1,c,0), (c,c,0) into (8.14) and computing the difference 
between the two. 

vlow

shigh
60°  

error 

v

s
H

=30°
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non-zero. One way of seeing this is as if applying a global threshold representing the 

camera noise, in addition to the per-pixel threshold that represents scene variability. A 

value of min = 5 was chosen as the default for the HSV colour components. 

 

Figure 8.9: Background mean and standard deviation maps 

Figure 8.9 shows the background mean and standard deviation maps constructed 

during the initialisation phase. For speed reasons, the floating-point values and are 

stored as integers in 16-bit image maps, with a fixed precision of 3 decimal places, 

and calculations are done using integer arithmetic. The mask generated by the 

calibration process (see §7.4.4) is used to reduce the workload per image. The 

OpenCV and IPL libraries both have conversion functions to and from HSV. But 

these use 8-bit images, reduce the hue to a range from 0 to 180, and do the work using 

floating-point arithmetic. Instead, the OmniTracking application uses its own 

conversion functions based on integer arithmetic. 

 

8.7.4 Background Subtraction Algorithm 

 

Using the background model maps mentioned in the previous section, and combining 

background subtraction with shadow detection, gives the following algorithm. This is 

combined later on with a hysteresis thresholding algorithm to get the final result. 

 

H S V

H S V
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The output of the algorithm will be the map l(x,y) where each pixel is labelled with 

one of the following values: 

background………….. this pixel represents a background element. 

foreground…………… this pixel represents a moving object. 

shadow pixel………… this is a background pixel under the effect of shadow. 

probable pixel………. this may be a moving object or a background shadow. 
Its final classification will be determined by the 
thresholding algorithm. 

 

Let the colour of pixel (x,y) be (H,S,V). The first step is obtaining the arithmetic 

difference for each colour component from the background value. In the case of hue, 

modular arithmetic is required: 





−−
<−−

==∆
otherwise

if

H

HH
HH H

HH
H

µπ
πµµ

µ (8.16)

SS S µ−=∆ (8.17)

VV V µ−=∆ (8.18)

Then the pixel is labelled according to these conditions: 

:3 thenif VV σ>∆ (8.19)

:33 thenandandVif SSHHVV σσµµα <∆<∆<< (8.19a) 

l(x,y) = shadow pixel 

:4 thenif VV σ>∆ (8.19b) 

l(x,y) = foreground pixel 

else : (8.19c) 

l(x,y) = probable pixel 

:3 thenSSandVVandif highlowHH <>>∆ σ (8.20)

:4 thenif HH σ>∆ (8.20a) 

l(x,y) = foreground pixel 

else : (8.20b) 

l(x,y) = probable pixel 

otherwise : (8.21)

l(x,y) = background pixel 
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Basically, (8.19) checks if a pixel had a large luminance variation and (8.20) checks if 

the pixel had a large hue variation. Inside the luminance condition, an extra check for 

shadow is done (8.19a), while the hue condition is only done if the pixel satisfies the 

low chromaticity thresholds (Vlow, Shigh). For both luminance and hue, if the variation 

is above 4 (100% confidence) then the pixel is labelled foreground; if less than 4 ,

but above 3 (99.7% confidence), then it is labelled as ‘probable’. These probable 

pixels will then be examined later during the thresholding step, and either set to 

foreground or shadow or just discarded. 

 

From initial test runs, it was found that because the algorithm checks for both 

luminance and chromaticity (hue) variations, better detection rates are obtained. This 

is mostly due to the camouflage problem, where objects might have the same colour 

or the same intensity as the background.  

 

8.7.5 Thresholding with Hysteresis 

 

The background subtraction algorithm labels some of the pixels as ‘probable’. The 

idea is that these pixels show a large difference from the background model (>3 ), so 

most probably are foreground or shadow pixels, but their probability is not high 

enough to guarantee this on their own – they must be supported by neighbouring 

foreground or shadow pixels. This is what the hysteresis thresholding algorithm of the 

program does. In addition, it also acts as a noise filter by suppressing any isolated 

foreground or shadow pixels. The algorithm is described below: 

 

For each pixel (x,y) in the label map l, consider its 8-neighbours and let: 

NF = number of 8-neighbours labelled ‘foreground’, and  

NS = number of 8-neighbours labelled ‘shadow’ pixels. 

 

Then apply the following conditions to l(x,y) using threshold T, to demote any 

isolated pixels: 

if l(x,y) = foreground and NF < T then : (8.22)

l(x,y) = probable 

if     l(x,y) = shadow and NS < T then : (8.23)

l(x,y) = probable 
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Finally apply the following conditions to l(x,y), to promote any probable pixels that 

are supported by their neighbours: 

if l(x,y) = probable and NF � T and NF > NS then : (8.24)

l(x,y) = foreground 

if l(x,y) = probable and NS � T and NS > NF then : (8.25)

l(x,y) = shadow 

Threshold T above is set to 4 – that is, half the neighbouring pixels. This process is 

repeated until either no pixel labels are changed in an iteration, or the maximum 

number of iterations are reached. Generally, thresholding with hysteresis converges 

quite rapidly and only a few iterations are required [TRUC98 §4.2.2]. In this case, the 

maximum number of iterations was set to 4. After thresholding is finished, any 

remaining probable pixels are set to background. 

 

Other methods of achieving similar results are mentioned in §8.3.4, but compared 

with morphological operations, hysteresis thresholding was found to give good results 

and to be quite fast – it is faster than OpenCV’s morphological functions that are 

optimised for MMX processors. 

 

Figure 8.10 shows hysteresis thresholding applied to parts of two frames from the 

PETS-ICVS dataset. Note how the bulk of the changes happen in the first iteration for 

both frames. This was observed consistently throughout the rest of the video stream. 

The figure also shows what happens if the maximum number iterations is not limited 

to 4 – the further refinement in the labelling is minimal and not really worth the extra 

processing. 

 

8.7.6 Background Model Adaptation 

 

For the background model to remain useful, the motion detection module of the 

program uses a background adaptation algorithm based on the two blending parameter 

method (see §8.4.1). Parameter bkg is used to update those pixels that in the label map 

l have been set to background or shadow, while frg is used for the foreground-

labelled pixels. Normally, frg � bkg, and the parameters are in range [0..1]. Setting 

frg to 0, one gets the selective update method, while frg = bkg is the blind update 
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method. These two parameters are user-configurable and the following values were 

used for the PETS datasets: 

 

dataset bkg frg 

PETS2001 dataset 4 0.03000 0.00150 

PETS-ICVS datasets C and B 0.00010 0.00001 

Background 
subtraction result 
(frame #10705) 
 

Background 
subtraction result
(frame #11980) 

Iteration 1: 
1566 pixels 
changed 

Iteration 1: 
3260 pixels 
changed 

Iteration 2: 
300 pixels 
changed 

Iteration 2: 
846 pixels 
changed 

Iteration 3: 
134 pixels 
changed 

Iteration 3: 
405 pixels 
changed 

Iteration 4: 
37 pixels  
changed 

Iteration 4: 
228 pixels 
changed 

… …  

Iteration 11: 
(for iterations 5 to 
11: a total of 65 
pixels were 
changed) 
 

Iteration 13: 
(for iterations 5 
to 13: a total of 
422 pixels were 
changed) 

Figure 8.10: Thresholding with Hysteresis – some results (PETS-ICVS dataset) 

shadow 
foreground 

probable 
background 
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For the standard deviation map, the update (8.9), was modified from: 
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(8.26)

to get rid of the expensive square-root. 

 

The update parameters tend to be small fractions (like the values shown above). 

This can give rise to loss of numerical accuracy for floating-point arithmetic. In the 

case of this implementation, fixed-point integer math is used which can mean that 

some of the values will be truncated to 0. To avoid these problems, it was decided to 

do the background update only every number of N frames (set to 6 for this 

application). 

 

To keep the same rate of exponential forgetting (of the old background values), (8.26) 

was modified slightly to take into account the fact that no update is done during the 

in-between N-1 frames. 
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α′ is only calculated once in the beginning, so no extra cost is added to the 

background update process (see §8.4 for how the exponential weighted sum is 

derived). 

 

8.7.6.1 Background Model Failure 

 

Even though it is adapted regularly, the background model may fail if there is a 

sudden and large illumination change, large camera movement, etc. The application 

should detect such situations, instead of just inundating later processing phases with 

detection errors and false positives. 
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The program keeps track of how many pixels are labelled as foreground. If this 

number exceeds 50% of the potential pixels (that is, taking into account the mask built 

by the calibration process to eliminate empty areas), an error message is reported on 

screen and process terminates. 

 

8.8 Results 

 

In general, the background subtraction algorithm appears to perform quite well (at 

least on the PETS datasets). The set of figures below contain selected images that give 

some indication of where the algorithm works well and where it fails, in terms of the 

problems mentioned in §8.6. 

 

The algorithm detects shadows quite accurately, as can be seen from Figure 8.11, 

where a person moves across the room and its outline is extracted quite well. Without 

shadow detection, the object’s appearance would have been heavily distorted. The 

algorithm is also robust to small-scale noise and small camera motion (~ �� SL[HOV���
Where the background subtraction algorithm fails to suppress noise, later on, the 

tracking algorithm filters these out by using temporal constraints. 

 

Figure 8.11: Results: detection of shadows (shadow shown in grey; PETS-ICVS dataset) 



124

Small scale camera 
movement. Light grey 
pixels are noise that 
has been correctly 
eliminated. 

camera movement larger 
than a few pixels cause 
some detection errors 
(black areas), but most 
noise is eliminated (grey 
areas). 

Figure 8.12: Results: noise due to camera movements 

One problem that occurs mostly in the indoor scene is object fragmentation, when 

objects have the same colour (and brightness) as the background (camouflage 

problem). Some of these errors can be seen in Figure 8.13. This is solved later during 

the tracking phase by means of region clustering.  

 

Part of the object has 
same colour as the 
background (white wall) 
and so is undetected, 
causing fragmentation. 
In addition, some bits are 
mislabelled as shadow 
(grey areas). 

Part of the object has 
same colour (and nearly 
same brightness) as the 
background. 

Figure 8.13: Results: Camouflage and object fragmentation  

Other detection errors were generated because of the foreground aperture problem, 

presence of ghosts, and background elements that were displaced by the objects. 

Examples of these are shown in the remaining figures. These errors are eventually 

eliminated when the background adapts fully to them. 

false 
positives 
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The original 
image with no 
motion in it. 

The blue car 
moves away, 
exposing the 
ground below it. 

Two objects 
detected: the car 
(on the left) and 
its ghost on the 
right (exposed 
ground). 

Figure 8.14: Results: The Ghost problem. 

motion  central pixels have  
 the same colour and 

do not appear to be  
 moving. 

Figure 8.15: Results: Foreground Aperture problem  

Figure 8.16: Results: Moved background elements   

chair (scene background) 
moved by person 

chair’s ghost 
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