
94

Chapter 8

Moving Object Detection

One of the main activities of visual perception is that of being aware of what is

happening in the surrounding world. In most cases, complete knowledge of the

environment is not required for a sensor to be able to achieve a basic level of

awareness. And the problem can be reduced to finding out (detecting) those ‘objects’

that undergo changes, from the rest of the objects that do not appear to change – the

latter can be considered to form part of a static ‘background scene’ that can be

ignored. Within this context, objects that appear to change are labelled foreground

objects and those that do not are labelled background objects, or collectively as the

background.

Usually the main reason why objects appear to change is because they move, and so

the process of detecting changes is also called moving object detection1. There are

several different techniques available in computer vision for moving object detection.

The main ones are:

• Optical flow methods,

• frame difference methods, and

• background subtraction methods.

The detection method chosen for the OmniTracking program uses the background

subtraction technique, since this, amongst others, is well suited for stationary cameras

– which is the normal case for omnidirectional cameras, since with their large field-

of-view they don’t have to move (rotate) to see the world.

1 In some computer vision literature, a distinction is made between motion detection and moving object
detection. Motion detection is defined as determining the changes due to motion (without doing any
further organisational processing on the changes), while moving object detection involves determining
the different objects that are moving [SONK93 §14]. For this thesis, the latter is being attempted, so
explaining the name of the chapter.

95

This chapter first starts with an overview of the other detection methods. Then, the

background subtraction technique is examined in more detail. This is followed by a

description of how moving object detection was implemented for the OmniTracking

program and ends with the results obtained when running the program on the datasets

mentioned in §4.

8.1 Optical Flow

Optical flow methods use the apparent motion of the image brightness values in a

sequence of images to estimate the relative motion of objects with respect to the

camera. This apparent motion of pixels is used to construct a 2D vector field of

velocities, called a motion field, which can be seen as the 2D projection (on the image

plane) of the 3D velocity field of the objects in the world [TRUC98 §8.3].

The main advantage offered by the optical flow technique is that it works when both

the objects and the camera are moving with respect to each other. But optical flow is a

very computationally intensive and slow process. Another disadvantage is that if the

camera is stationary, then objects are required to move – if they stop moving, objects

will have a zero motion field and so are undetectable.

8.2 Frame Difference

These are the simplest methods and consist of comparing two adjacent frames from a

video stream to find out those pixels that have changed. This is usually done by

calculating the difference between the brightness values of the pixel in the two

frames, based on the assumption that changes in brightness are due to real changes in

the scene. Some threshold is then applied to the differences to eliminate small

variations due to sensor acquisition noise. The result is a binary image where each

pixel is labelled as either ‘moving pixel’ or ‘background’. This process can be

expressed by the following equation:



 >−

=∆
otherwise0

),(),(if1
),(21

2,1

τyxfyxf
yx tt

tt (8.1)

96

for some threshold and using image frames at time t1 and t2. The image frames can

be either consecutive (t2 = t1+1), or a certain number n of frames apart. Because of

the use of adjacent frames, these methods are also called temporal differencing

[JAIN95 §14.1].

The main advantage, apart from the simplicity, is that frame differencing is very

adaptive to dynamic environments. This is because the gap between frames t1 and t2

is very short compared to any (usually slow) changes that might occur in the ‘static’

background. On the other hand, a disadvantage is that an object usually does not move

much from frame t1 to t2 and only parts of the object (the outer parts) will appear as

moving, as can be seen in Figure 8.1. This is called the foreground aperture problem

[TOYA99].

Figure 8.1: Frame Differencing technique
(The images are parts of frames 460 and 465 of the PETS2001 dataset).

8.3 Background Subtraction

Background subtraction methods can also be loosely classified into the category of

difference-based methods (like frame differencing), but instead of using adjacent

frames and finding the differences between the two, a background model is used.

Each frame is ‘compared’ to this background model and the differences from the

background are found. The main requirement for background subtraction methods is

that the camera remains stationary; else the background model will become invalid2.

2 Although there are some implementations where background subtraction methods have been adapted
to be used for PTZ (pan-tilt-zoom) cameras. Such as the Appearance Sphere application, quoted in
[YAMA02], which builds a background model for a PTZ camera. But these add complexity, require
precise calibration and camera synchronisation and can be computationally expensive.

t2
t1

97

There are several different variants of the background subtraction technique, as

described in the next section.

8.3.1 Simplest Form – Mean and Global Threshold Method

In its simplest form, the background model consists of an image of what the empty

scene (that is, with no moving objects) is expected to look like. Each frame is then

subtracted from the background image B and a threshold operation is applied (using

the value for all image pixels).



 >−

=∆
otherwise0

),(),(if1
),(

τyxfyxB
yx t

t (8.2)

Figure 8.2: Background Subtraction technique – the basic idea.

Compared to frame differencing, background subtraction methods have the advantage

of detecting the whole object (see Figure 8.2). But their main disadvantage is that they

are very sensitive to dynamic changes in the scene (that is, the background model can

become out-of-date).

In this section it was mentioned that the background image consists of an image of the

empty scene. But in most cases, it’s not possible to get such an image beforehand.

Especially for busy outdoor environments, like the one mentioned in §4.2 and being

used for this project. Also, the ideal case is for the background model to be built

automatically without human intervention. The simplest way of building a

background image is to take the average of several frames:

∑
=

==
n

t
tnyx yxfyxB

1

1
),(),(),(µ (8.3)

background
model

time

t

98

The idea behind the use of averages has its origins in the 19th century, when it was

discovered in photography that, by taking photos with very long exposures, moving

objects are eliminated from the scene [FRIE97]. The time duration of n frames used to

build the background image is usually called the training phase or initialisation phase

of background subtraction.

8.3.2 Handling Noise – Normal Distribution Method

One of the limitations of the previous method is the use of the global threshold for

determining whether a pixel value is similar to the value expected from the

background model or not. Assuming a constant scene, the variation observed for a

background pixel over a period of time should only be caused by camera noise, which

is usually modelled by a normal distribution with zero mean Nnoise(0, 2) for that

particular pixel [ELGA99].

Figure 8.3: Background Subtraction technique – normal distribution model.

Adding the camera noise to the pixel’s mean value from the background model, the

pixel’s variation can then be modelled by N(, 2). So, together with form the

background model B, and is calculated during the training phase using the following

equation (is still calculated using (8.3)):

()∑
=

−=
n

t
yxtnyx yxf

1

2
),(

21
),(),(µσ (8.4)

),(),(),(),(yxyxyxB σµ= (8.5)

A pixel is then labelled as foreground if),(),(),(yxyx kyxf σµ >− for some k.

background
model

t

99

8.3.3 Handling Background Motion – Mixture of Gaussians Method

The assumption so far has been that the background scene does not change. But it can

happen that background elements show some movement, for example, trees moving

in the wind in outdoor environments. This ‘uninteresting’ motion should still be

classified as belonging to the background. The brightness variations exhibited by

these pixels is multimodal and is best handled by using a mixture of Gaussian

(normal) distributions [STAU99]. The mixture model M is defined as:

∑
=

=
k

i
ii NM

1

),(σµπ (8.6)

where k is the number of component distributions used (normally ranging from 3 to

5), Ni is the ith individual normal component distribution and i is its (mixing) weight,

with 1
1

=∑ =

k

i iπ .

The basic idea of the mixture model is that the different distributions will each model

a particular background element that the pixel happens to result from (in the case of a

moving tree, a pixel can at one time be the light coming from the tree and at another

moment it will be the sky, for example). A separate Gaussian mixture model is used

for each pixel. The background model is then defined as:

),...,,,,...,,,,...,,(),(212121 kkkyxB σσσµµµπππ= (8.7)

In the above equation, the individual parameters are defined for each pixel, that is, 1

should read as 1(x,y), but the (x,y) subscript has been omitted to avoid clutter.

Fitting the mixture model to the pixel data, during the training phase of background

subtraction, is usually done by maximising some likelihood function of the mixture

model M. Methods such as the Expectation-Maximisation (EM) algorithm or the K-

means algorithm are usually used for this process [FRIE97; STAU99].

A Gaussian mixture background subtraction is very robust to background scene

motion. However, fitting the mixture model is computationally expensive, and

maintaining a model for each pixel requires large amounts of memory.

100

Figure 8.4: Background Subtraction technique – Gaussian Mixture model.

8.3.4 Post-Processing

The result of background subtraction is a binary image in which each pixel is labelled

as foreground or background. Normally, some sequence of post-processing operations

is applied to the result to make the background subtraction algorithm more robust.

Examples include: morphological operations, cleaning operators (to fill gaps in the

result and remove noise), and shadow removal.

8.4 Background Adaptation

One of the disadvantages of background subtraction is that the scene can change over

(normally long) periods of time and so the background model may get out of date (for

example, illumination changes during the day). To counteract this, the background

model can be modified at run-time to adapt to any such changes – this is called

background adaptation, or sometimes background maintenance [TOYA99].

A common technique for performing background maintenance is to employ a moving-

window average, where the background is re-calculated at time t from the previous n

frames (from t-1 to t-1-n). This requires the previous n samples for each pixel to be

stored.

A better alternative is to use the temporal integration approach, where the background

model is updated using the following general equation:

),(),()1(),(1 yxfyxByxB ttt αα +−= − (8.8)

background
model

t
1

3
1

3

1
3

ƒ

101

where is called the integration parameter (or blending parameter). More

specifically, for the single normal distribution method, (8.8) is implemented as

follows:

),(),(

),()1(

),()1(

),(),(

2
),(

2
),(1),(

),(1),(

yxtyxtt

yxttyxtyxt

tyxtyxt

yxB

yxf

yxf

σµ

µασασ

αµαµ

=

−+−=

+−=

−

−

(8.9)

In the case of the Gaussian mixture model, the same blending function can be applied

to the distribution component that best matches (supports) the pixel. Alternatively, the

mixture model is updated using a completely different procedure, such as an

incremental version of the EM algorithm [FRIE97].

The parameter ranges from 0 to 1 and determines how responsive is the background

model to change. A large value means that a higher contribution from the current

pixel value is added to the background model Bt and the contribution of the older

values (Bt-1) is reduced. At any time t, the reduction of the contributions of

background Bt follows the sequence:

....

)1()1()1(

)1()1(

)1(

321
23

3

21
2

2

11

etc

fffBB

ffBB

fBB

ttttt

tttt

ttt

++++

+++

++

+−+−+−=

+−+−=

+−=

αααααα
αααα

αα

It is clear that this sequence forms a weighted sum of previous pixel values with the

weight t)1(α− being an exponential function. For this reason, the background update

process is called an exponential forgetting process with α1 being the time constant of

the process [FRIE97].

Figure 8.5: Exponential forgetting for background update.

(1- �

t

102

8.4.1 Types of Background Update

Normally, update of the background model is only performed for those pixels which

at any time t are labelled as background by the detection process. This implies that

background update is done as the last step of the background subtraction process, after

the detection and labelling phase is finished. This selective type of background update

helps to increase the accuracy of detection, since foreground objects will not corrupt

the background model.

But problems may occur if the decision of whether a pixel is background or not is

incorrect. If the background of a pixel changes and it is incorrectly labelled as

foreground, this may lead to its background model never to be updated and hence

causes persistently incorrect decisions to be taken by the detection algorithm. This is a

deadlock situation [ELGA99].

One way of solving the deadlock problem is to do a blind update – updating all the

pixels regardless of whether they are foreground or not. The disadvantage of this is

the increase in detection errors.

A compromise between selective and blind update, is to use two blending parameters,

one for background pixels and the other for foreground. Generally, the parameter for

foreground pixels is set to a slower rate of integration [BOUL99].





+−
+−

=
−

−

’foreground’is),(if),(),()1(

’background’is),(if),(),()1(
),(

1

1

yxfyxfyxB

yxfyxfyxB
yxB

ttfrgtfrg

ttbkgtbkg

t αα
αα (8.10)

8.5 Review of Applications using Background Subtraction

This section gives a brief review of some applications that use the background

subtraction technique for moving object detection, with special attention to those

using omnidirectional cameras. More applications can be found in [MCIV00; TOYA99].

• [BOUL99] use background subtraction for an omnidirectional camera-based

surveillance application named LOTS. Background subtraction is performed

on the raw omnidirectional image. Two separate background models are used,

103

in cascade fashion. The primary background consists of a single normal

distribution,),(1
tt

st
tB σµ= , and is updated using separate foreground and

background parameters (see §8.4.1). The second background is only applied

to pixels labelled as foreground by the first background model, and it is

updated using nd
ttfrg

nd
t ByxfB 22

1)1(),(αα −+=+ , if),(2 yxfB t
nd

t − is below

some threshold, or),(2
1 yxfB t

nd
t =+ otherwise.

• Colour is used for background subtraction in the application described in

[CUTL98]. Separate averages are kept for the colour components (RGB colour

space) with the background model consisting of:),,(B
t

G
t

R
ttB µµµ= . A pixel is

labelled as foreground if it satisfies the condition:

σµ kyxfyx
BGRc t

c
t >−∑ ∈),,(

),(),(, where is estimated beforehand.

• The W4 application of [HARI98], uses a background model consisting of:

),,(maxmin deltat fffB = , where the values are the maximum, minimum, and

maximum difference found in the set of pixel values during the training phase.

A pixel is labelled as foreground if either of the conditions

),(),(),(max yxfyxfyxf deltat >− or),(),(),(min yxfyxfyxf deltat >− is true.

The background is updated using the selective update approach (§8.4.1).

• A Gaussian mixture model is used by [STAU99] for modelling the background,

with 3 to 5 component distributions and using an online K-means algorithm

for fitting the mixture model to the training data. In this application, a

variation of the blind background update type is used, and background update

is done before the foreground is detected. If the pixel value matches a

component distribution (is within 2.5), then that component’s parameters i,

i, and� i are updated using temporal integration (8.8). The other components’

parameters are left unchanged. If no component matches the pixel’s value, the

least probable component is deleted and replaced with a new component

which has),(
),(, yxftyxti =µ ,

),(, yxtiσ set to a large value, and low
),(, yxtiπ . For

moving object detection, the component distributions in the mixture model are

sorted in order of their probability of occurrence, and the first L of these are

chosen to represent the background. If a pixel does not fall within 2.5 of any

of these L distributions, it is labelled as foreground.

104

• [HUAN02] use background subtraction for an omnidirectional-based application

called NOVA, used for tracking people in a room. Due to the simplified nature

of the indoor environment, background subtraction is performed on the

panoramic image obtained from unwrapping the raw omnidirectional image

(unlike the LOTS application mentioned further above). The single normal

distribution method is used, with the addition that the background model is

augmented with the brightness distortion and chrominance distortion CD

values (background model Bt=(t, t, t, CDt)). The last two are used for doing

shadow detection as a post-processing step to background subtraction. The

differences between the image and the background panoramic image are

collapsed to a 1-D profile – by accumulating a histogram of pixel differences

in each column of the panorama. A global threshold is then applied to each

column to see if enough pixels within that column were labelled as

foreground.

• [ZHU99] also use background subtraction for an indoor environment-based

application captured with an omnidirectional camera. Similarly to the previous

application, background subtraction is performed on the dewarped panoramic

image. A combination of background image subtraction and frame

differencing is used. The results from background subtraction s(x,y) and frame

differencing d(x,y) are combined at a region level rather than at a pixel level,

with the pixel (x,y) of region R being accepted as foreground if the condition

[]),(min),(
),(

ii
Ryx

yxdyxs
ii ∈∀

≥ is satisfied.

• [YAMA02] uses background subtraction for omnidirectional images, in which

the background is modelled with)noise)2sin(,(×+= ktB tt πωσµ , where the

term)2sin(tπωσ models the flicker of fluorescent light and CRT screens, and

the noise×k factor represents the camera sensor noise. If the condition:

noise)2sin(noise)2sin(×++≤≤×−− kt(x,y)fkt ttt πωσµπωσµ is sat-

isfied, then the pixel is labelled as background. Temporal integration is used to

update the background model.

• [JABR00] implement a background subtraction method that combines colour

and edge information. The background is modelled by:),,,(CCCC
t VHB σµ=

for C ∈ (R,G,B), where H is the horizontal edge map and V the vertical one

105

obtained from the Sobel edge detector. The edge maps of the frame at time t

are subtracted from the edge maps of the background model and the resulting

edges are classified as: occluding edge, occluded edge or background edge.

The edge information is combined with the thresholded colour differences to

get a final measure of change. The idea of using edge information is that this

usually leads to a more accurate extraction of the boundaries of objects.

8.6 Types and Sources of Detection Errors

Moving object detection is usually the first processing step performed by computer

vision applications. Any detection errors that occur during this step will propagate to

later processing phases and affect their results in a negative way. Therefore it is

important that the algorithms used for moving object detection are as accurate as

possible and that detection errors are eliminated or minimised.

The accuracy of these algorithms is usually measured by their detection rate – that is,

how many moving objects in the world they are able to find. And also by the number

of detection errors they generate – normally expressed in terms of the number of false

positives and false negatives. A false positive occurs when an algorithm says that a

certain set of pixels belong to a moving object, when in reality there is no object at the

indicated position. A false negative occurs when there is a moving object in the scene,

but the algorithm misses the object and labels its pixels as background [TRUC98 §A.1].

In the case of the background subtraction technique, several conditions can potentially

give rise to detection errors, and these are briefly mentioned below. The chosen

background subtraction algorithm should be implemented with these conditions in

mind, with the aim of trying to achieve a certain degree of robustness against them.

But, because of their low-level nature (that is, independent pixel-based processing),

background subtraction techniques may not be able to solve all of the problems, and

the solution to some of them (if at all possible), may require domain knowledge and

higher-level processing [TOYA99].

Camera-related problems:

• Noise objects: Camera noise usually manifests itself as random fluctuations in

the intensity values of pixels and these may cause the background subtraction

106

algorithm to mistakenly label them as foreground pixels – generating false

positives. The inclusion of a camera noise model in the background (see

§8.3.2), helps to reduce this problem. Applying a size filter to the background

subtraction result is also effective, because noise objects tend to be small

[COLL00].

• Incomplete extraction: Camera noise can also cause an object not to be fully

differentiated from the background, leaving gaps especially in the boundary of

the object. In the worst case, an object may become fragmented. Applying

morphological operations on the background result can alleviate this problem.

• Registration errors: The basic assumption for background subtraction

techniques is that the camera is stationary. But in some cases the camera may

suffer from vibrations, for example, when objects come very close to the

camera or due to wind in outdoor scenes. Camera motion can cause the

background to get misaligned with respect to an image and the wrong

background values to be used. One way of minimising this problem is to

implement some form of automatic registration that brings the background and

image back in alignment with each other.

Lighting problems:

• Gradual light changes: The appearance of outdoor background scenes is

affected by the slow change of illumination caused by daylight3. This may also

affect indoor scenes, where windows are present. This is normally solved

through background adaptation (§8.4).

• Sudden light changes: Examples include turning the lights on and off (in

indoor scenes) and the sun moving behind clouds (outdoor scenes). In this

case, background adaptation might not help, as its rate of update is much

slower. Sudden light changes affect the whole scene and cause many false

positives to appear – one can detect them by checking for any abnormal

increase in the number of foreground objects, and then change or reconstruct

the background [XU01].

3 See [FORS02 §4.1.3] for a graph showing variations of daylight measured at different times of the day
and under different atmospheric conditions.

107

Shadow-related problems:

• Object distortion: Shadows can give rise to a number of different detection

errors. If shadows are labelled as part of the object, then the object’s shape

will appear distorted, and this distortion can affect later processing phases that

use geometrical properties for object classification, location estimation, etc.

[CUCC01]. The effect of shadows can be suppressed by using shadow detection

algorithms or by using information that is invariant to shadows.

• Object loss: Shadows can also give rise to object loss when an object’s

shadow is cast upon another object in the scene.

• Object under-segmentation: When two objects are close to each other, their

shadow might cause them to appear to be connected. And the two objects will

be merged together by the algorithm causing under-segmentation – that is, the

algorithm reports less objects than in fact there are in the scene [PRAT01].

Shadow suppression reduces this problem.

Object-related problems:

• Camouflage: The objects themselves, or their behaviour, may be the source of

errors for background subtraction. Camouflage occurs when parts of an

object’s colour match the background, so making them indistinguishable from

the background. This results in object fragmentation. Using clustering or

morphological operations may help to reduce this problem [COLL00].

• Slow-moving objects: If objects move at a very slow rate, comparable to the

background adaptation rate, there is the possibility for them to be partially

‘absorbed’ into the background. This can cause the objects to be lost or may

give rise to false positives when they eventually move away from the current

position. Selective background update solves this problem (§8.4.1). Another

way is through the use of multiple backgrounds [BOUL99].

• Foreground aperture problem: When a uniformly-coloured object moves, it

can happen that the interior pixels of the object are not detected [TOYA99]. This

problem is more common for frame differencing methods, but it may also

occur during background subtraction if an object has been stationary for some

time. Motion will only be perceived at the edges of the object and not in the

centre. This causes the object to be fragmented.

108

Background-related problems:

• Illegitimate motion: Motion by elements of the background scene (example,

trees swaying in the wind) causes false positives to be detected. Modelling the

background with multiple distributions, as described in §8.3.3, helps to reduce

this problem.

• Moved background objects: Another source for false positives is when

objects change elements of the scene or remove and introduce new elements

(for example, a person enters a room and moves a chair from one place to

another) [STAU99]. Background adaptation can help to reduce this problem, as

the affected elements will eventually be absorbed into the background.

• Ghosts: When an object that has been stationary for a long time (and hence

absorbed into the background) moves away, two objects are detected – the

moving object and another false positive where the object was originally

located. This ‘negative object’ is called a ghost [COLL00]. Use of background

update (except for the selective update type – see §8.4.1) will eventually

remove the ghost object. It is also possible to use some post-processing logic

to patch the ‘hole’ left in the background by the object. This problem might

give rise to deadlock situations if selective background update is used

[CUCC01].

• Deadlock problem: As mentioned in the previous paragraph, if selective

background update is used (that is, the background is not update for pixels

labelled as foreground), false positives tend to persist indefinitely as the

background of these pixels will not be updated. This problem can be reduced

by using the other update types mentioned in §8.4.1.

• Quiet training phase: The background model is normally built automatically

from the first few image frames captured by the camera. The ideal condition is

for the scene to be empty of any moving objects to get an accurate background

representation, but in real-life this is not always possible. The presence of

moving objects during the training phase of the algorithm will cause some

corruption of the background, which in turn might give rise to detection errors.

This problem is also called the bootstrapping problem by [TOYA99].

109

8.7 Implementation

The OmniTracking application uses background subtraction for detecting moving

objects. Background subtraction is performed directly on the omnidirectional image.

It was decided to model each pixel with a single normal distribution and to perform

background model adaptation using two different rates, for the foreground and

background pixels respectively. Background subtraction is performed using colour

information, as this is a better discriminant than just greyscale. To solve the over-

segmentation issue, shadow detection and removal was implemented by working in

the HSV colour space. Finally, thresholding-with-hysteresis is performed on the

background subtraction result to get the classification of pixels into foreground and

background.

8.7.1 Choosing a Background Model

The first decision that had to be taken was which background model to use. The three

main types of background models were described in §8.3. The Gaussian mixture

model is the most accurate of the three because it models each pixel with multiple

components and it appears that it should be the method of choice. But the problem

with this background model is its computational cost and large memory requirements.

8.7.1.1 A Test using Mixture Models

To check whether it was worthwhile using this method or not, a test program was

written that modelled each pixel by a mixture of 3 Gaussians. The EM algorithm was

used to fit the mixture model to an initial set of 100 frames from the PETS2001

dataset, selected because this dataset shows evidence of motion in the background –

swaying trees, moving clouds, slight camera jitter, etc.

Each pixel value f(x,y) was defined by the colour vector (H,S), where H and S are its

hue and saturation values (as defined in the HSV colour space). Therefore, each 2D

Gaussian component Ni takes the following parameters: ((H, S), (H
2, S

2), HS),

where H
2, S

2 are the individual variances and HS is the covariance. Ni is defined as:

110

[] []),(),(1),(),(
2
1

2

1 SHSH SHTSH
eNi

µµµµ

π

−−∑−−

∑
= where 








=∑

2

2

SHS

HSH

σσ
σσ (8.11)

The component mixture M of each pixel then consists of (N1, N2, N3� 1� 2� 3). This

results in a memory requirement of 72 bytes per pixel4. Since the size of each frame of

the PETS2001 dataset is of 768×576 pixels, the total memory requirement for the

model is of ~31Mb – this not counting additional values such as thresholds and pre-

calculated values that can be used to make processing run faster.

In addition, running the EM algorithm for each mixture model of every pixel is quite

expensive, even when a fast version of the EM algorithm is used, for example, the

Incremental EM algorithm [NG03]. From some initial tests, the standalone background

subtraction algorithm with a mixture model was running at a rate of between 2 and 3

frames per second5, and the initial model from the first 100 frames took about 4

minutes to be built, using the standard EM algorithm.

One way of reducing the runtime costs is to reduce the size of the image. But this is

not feasible for omnidirectional images, with their already low-resolution. Other

improvements include assuming zero covariance (independence) between the colour

components (HS=0) and using look-up-tables (at the cost of more memory) [STAU99].

At this point it is useful to see how many of these Gaussian components are actually

used. Figure 8.6 shows the variations of the (H,S) values for six pixels and the number

of Gaussian components that were required to explain these variations. For example,

point 1 is a pixel that is sometimes a tree (blue component) and sometimes the sky

(red component) with weights 0.57 and 0.43 respectively. Figure 8.6(b) shows that for

most of the pixels, one component is enough. As expected, the pixels needing all 3

components are the trees and some parts of the cars with their metallic surfaces. Most

of the road and the grass do not change much. There are some variations in the road

surface, which are arranged in linear-like structures – these most probably are due to

JPEG noise (pixels that happen to fall on the ‘edges’ of the 8×8 compression blocks).

4 The values are stored as floating-point variables, which in C++ are represented by 4 bytes. Therefore
the total consists of 20 bytes for each of the 3 components and the rest for the mixture weights i.
5 This without background update.

111

Most of the background movement seen in this dataset is quite small (a few pixels).

This is because the background elements in the outdoor scene are at a certain distance

from the camera, and also due to the low resolution of the omnidirectional camera. In

general, one may assume that this also holds for most environments in which

omnidirectional-based surveillance applications are used. The background movements

manifest themselves mostly as thin linear-like groups of pixels (mostly due to pixels

that are on the edges between two background elements) – these can be eliminated

using techniques such as size filtering or thresholding.

Using only hue and saturation for modelling pixels misses objects that happen to have

the same colour as the background, but different brightness. To detect these objects,

the brightness V needs to be added to H and S, meaning more memory would be

required for the mixture model.

For these reasons it was decided not to use the Gaussian mixture model for

background subtraction, but the single Gaussian distribution model (see §8.3.2). This

method should give reasonable results while at the same time being fast. But given

more time, and if the mixture model program is optimised enough6, it could be used

instead.

8.7.1.2 The Chosen Model

The chosen background subtraction method for the OmniTracking application, models

each pixel by a normal distribution as follows:

()),,(),,,(),(),(222
),(),(VSHVSHyxyx NNyxB σσσµµµσµ == (8.12)

And the H, S, V colour components are considered to be independent, that is,

correlation between them is assumed to be zero. Colour is used as this gives a better

detection rate. The choice of working in the HSV colour space is due to the presence

of shadows, as will be mentioned in the next section.

6 For example, memory-wise there’s no need to allocate storage for all 3 components, as few pixels will
require all 3 of them (as can be seen in Figure 8.6(b)). But then, some form of pointer-based memory
structure will be required, which might add some processing and memory overhead.

112

Figure 8.6: Mixture Models for pixels of the PETS2001 dataset.

Components needed:
 black = 3 components

dark grey = 2 components
light grey = 1 component

1

2

3

4

5

6

1. Tree & Sky (165,221) 2. Building (270,100)

3. Road (350,200) 4. Grass (475,150)

5. Tree & Window (575,211) 6. Car Window (351,351)
(a) Six selected points and their H,S-scatter
plots with Gaussian components fitted to
them.

(b) The picture below shows the number of
Gaussian components required by the
pixels to model their backgrounds.

S

H

113

8.7.2 Robustness to Shadow

Shadow is a major source of problems for object detection, as mentioned in §8.6. This

is especially true within the confines of indoor environments – for example, objects

tend to be quite close to each other and shadow might cause the objects to appear to

merge. Figure 8.7 shows some examples taken from the PETS-ICVS dataset.

(a) Object Distortion due to shadow (part of frame 10310).

(b) Under-Segmentation (merging) due to shadow (frame 11205).

(c) False positive (shadow object) (frame 10820).

Figure 8.7: Detection Errors caused by Shadow (columns 1 to 3). Last column is with
shadow detection enabled (grey). (Frames from PETS-ICVS dataset).

For this reason, it was decided that shadow detection should form an essential part of

the background subtraction process.

But what is shadow? First, it can be seen that when an object is in shadow, its

appearance (colour) does not depend on the object casting the shadow (blocking the

light) [FRIE97]. Furthermore, when the object is in shadow, it is not completely dark,

but is lit by the ambient light generated by the surrounding scene – that is, light

reflected by the other objects in the scene. Normally, this ambient light is nearly grey

(colourless), as it is the average of the light reflected by many of the surrounding

objects [XU01].

114

Combining these two observations together: when an element in the background

scene is in the shadow cast by a moving object, its colour will not change, but its

brightness will be reduced. Therefore, if background subtraction is to be robust to

shadows, it must be able to ignore brightness changes when the colour of the

background remains the same – this is called illumination invariance [XU01]. To do

this, the algorithm must be able to separate the illumination component of the pixel’s

light from the chromatic component. This idea is also related to an ability of the

human vision called colour constancy, where humans are able to assign the same

colour to an object under different levels of illumination [HORP99].

There are many different ways of expressing the pixel’s brightness that achieve

illumination invariance. For example:

• [ELGA02; XU01] use the values (r,g) where ()BGRRr ++= ,)(BGRGg ++=

in the standard RGB colour space. These are invariant to brightness because of

the normalisation factor in the denominator.

• [XU01] mentions also the log chromaticity differences ln(R/G) and ln(B/G).

• For the YUV colour space, the values U/Y, V/Y can be used.

• The hue H and saturation S values of the HSI or HSV colour spaces.

• [HORP00] consider colour values as vectors in the RGB colour space and derive

the brightness differences and chromaticity distortions CD in terms of vector

geometry.

More methods can be found in [PRAT01]7.

8.7.2.1 HSV Colour Space and Shadow Detection

For this implementation, it was decided to use the HSV (hue-saturation-value) colour

space. This space separates the chromaticity values, expressed in terms of hue and

saturation, from the illumination value V. The values H and S are invariant to

illumination changes and can be used for suppressing shadows.

A pixel f(x,y) = (H,S,V) is considered to be a shadow pixel, if it satisfies the following

condition, when compared to its background value (HB,SB,VB):

7 In the case of background subtraction and many other computer vision applications, shadow is
considered to be a nuisance and a source of problems. But shadow can be useful in its own right, for
example, in shape from shading applications [SONK93 §9.3.2].

115

BB

BB

VVV

SSHH

<<
≈≈

α
,

(8.13)

The last column in Figure 8.7 shows shadow detection applied to the PETS-ICVS

dataset. The global parameter in (8.13) defines the maximum amount of shadow

darkening that can be expected to be present in the scene, that is shadow strength is

expected to be (1-). This usually depends on the strength of the illumination

source(s) and the amount of ambient light present. The reason for including this lower

limit on brightness reduction is to avoid missing objects that happen to be coloured

like the background but are darker. For example, the person in Figure 8.7(a) would be

classified incorrectly as shadow (because the black top appears to be a darker version

of the white-colour of the wall).

By default, the value for parameter is set to 0.7 (typical of indoor scenes), and is

user-configurable8. Setting to 1 in (8.13) disables shadow detection. For now, this

value remains fixed while the program is running. This is a limitation and ideally, this

value should be adapted depending on the lighting conditions in the scene (shadows

are stronger at noon).

8.7.2.2 Low Chromaticity Conditions

The HSV colour space is cylindrical in nature and the hue component (the main value

determining the chromaticity) is derived from the RGB space using [JAIN95 §10.4]:

()))((2

2
cos

2 BGBRGR

BGR
H

−−+−

−−=
(8.14)

From (8.14), it is evident that hue is undefined when R = G = B = 0. In addition, hue is

unstable when the colour is near the origin of the RGB space, giving rise to wide

variations in hue for small changes in RGB.

In Figure 8.8, the range of ‘yellow’ colours, defined in RGB as (c,c,0) for c ∈

[0..255], map to the range of colours (60°,1,c) in the HSV colour space (the thick

black vertical line in the diagram). Adding an error of (± ,0,0) to the RGB colours,

8 The default value of 0.7 worked well for both of the PETS datasets.

where 10 ≤< α

116

results in the error shown in the figure. For example, if is 1, then the RGB colour

(c±1,c,0) maps to HSV colour (60°± ,1,c�� ZKHUH� LV� IRXQG� WR� EH9:

12

12
cos

2 ++
+=

cc

cδ . The hue error has a maximum value of 30° when)(1 Vc == ,

showing the instability of hue for low RGB values.

Figure 8.8: Low chromaticity thresholds for HSV colour space

So, during background subtraction, shadow detection as defined in (8.13), is only

done if the pixel’s colour satisfies the following thresholds:

highlow SSandVV <> (8.15)

8.7.3 Background Initialisation

The background model),(),(HSVHSVyxB σµ= is initialised from the first n frames of

the video stream, using (8.3) and (8.4). The default duration is set to 32 frames, but

this value is user configurable. Background initialisation may suffer from the problem

of having moving objects within the scene while the background is being accumulated

– this is the case of the PETS2001 dataset, where activity starts from frame 1. But no

attempt was made at solving this problem as it wasn’t considered critical – to

compensate for this, one could increase the duration of background initialisation, and

hope that there are not much slow-moving objects at the time.

The values obtained from background initialisation, are checked to make sure that

they are above a certain global threshold min. This threshold represents the estimate

for the camera noise and also ensures that the variances of the background model are

9 Derived by substituting the RGB colours (c+1,c,0), (c,c,0) into (8.14) and computing the difference
between the two.

vlow

shigh
60°

error

v

s
H

=30°

117

non-zero. One way of seeing this is as if applying a global threshold representing the

camera noise, in addition to the per-pixel threshold that represents scene variability. A

value of min = 5 was chosen as the default for the HSV colour components.

Figure 8.9: Background mean and standard deviation maps

Figure 8.9 shows the background mean and standard deviation maps constructed

during the initialisation phase. For speed reasons, the floating-point values and are

stored as integers in 16-bit image maps, with a fixed precision of 3 decimal places,

and calculations are done using integer arithmetic. The mask generated by the

calibration process (see §7.4.4) is used to reduce the workload per image. The

OpenCV and IPL libraries both have conversion functions to and from HSV. But

these use 8-bit images, reduce the hue to a range from 0 to 180, and do the work using

floating-point arithmetic. Instead, the OmniTracking application uses its own

conversion functions based on integer arithmetic.

8.7.4 Background Subtraction Algorithm

Using the background model maps mentioned in the previous section, and combining

background subtraction with shadow detection, gives the following algorithm. This is

combined later on with a hysteresis thresholding algorithm to get the final result.

H S V

H S V

118

The output of the algorithm will be the map l(x,y) where each pixel is labelled with

one of the following values:

background………….. this pixel represents a background element.

foreground…………… this pixel represents a moving object.

shadow pixel………… this is a background pixel under the effect of shadow.

probable pixel………. this may be a moving object or a background shadow.
Its final classification will be determined by the
thresholding algorithm.

Let the colour of pixel (x,y) be (H,S,V). The first step is obtaining the arithmetic

difference for each colour component from the background value. In the case of hue,

modular arithmetic is required:





−−
<−−

==∆
otherwise

if

H

HH
HH H

HH
H

µπ
πµµ

µ (8.16)

SS S µ−=∆ (8.17)

VV V µ−=∆ (8.18)

Then the pixel is labelled according to these conditions:

:3 thenif VV σ>∆ (8.19)

:33 thenandandVif SSHHVV σσµµα <∆<∆<< (8.19a)

l(x,y) = shadow pixel

:4 thenif VV σ>∆ (8.19b)

l(x,y) = foreground pixel

else : (8.19c)

l(x,y) = probable pixel

:3 thenSSandVVandif highlowHH <>>∆ σ (8.20)

:4 thenif HH σ>∆ (8.20a)

l(x,y) = foreground pixel

else : (8.20b)

l(x,y) = probable pixel

otherwise : (8.21)

l(x,y) = background pixel

119

Basically, (8.19) checks if a pixel had a large luminance variation and (8.20) checks if

the pixel had a large hue variation. Inside the luminance condition, an extra check for

shadow is done (8.19a), while the hue condition is only done if the pixel satisfies the

low chromaticity thresholds (Vlow, Shigh). For both luminance and hue, if the variation

is above 4 (100% confidence) then the pixel is labelled foreground; if less than 4 ,

but above 3 (99.7% confidence), then it is labelled as ‘probable’. These probable

pixels will then be examined later during the thresholding step, and either set to

foreground or shadow or just discarded.

From initial test runs, it was found that because the algorithm checks for both

luminance and chromaticity (hue) variations, better detection rates are obtained. This

is mostly due to the camouflage problem, where objects might have the same colour

or the same intensity as the background.

8.7.5 Thresholding with Hysteresis

The background subtraction algorithm labels some of the pixels as ‘probable’. The

idea is that these pixels show a large difference from the background model (>3), so

most probably are foreground or shadow pixels, but their probability is not high

enough to guarantee this on their own – they must be supported by neighbouring

foreground or shadow pixels. This is what the hysteresis thresholding algorithm of the

program does. In addition, it also acts as a noise filter by suppressing any isolated

foreground or shadow pixels. The algorithm is described below:

For each pixel (x,y) in the label map l, consider its 8-neighbours and let:

NF = number of 8-neighbours labelled ‘foreground’, and

NS = number of 8-neighbours labelled ‘shadow’ pixels.

Then apply the following conditions to l(x,y) using threshold T, to demote any

isolated pixels:

if l(x,y) = foreground and NF < T then : (8.22)

l(x,y) = probable

if l(x,y) = shadow and NS < T then : (8.23)

l(x,y) = probable

120

Finally apply the following conditions to l(x,y), to promote any probable pixels that

are supported by their neighbours:

if l(x,y) = probable and NF � T and NF > NS then : (8.24)

l(x,y) = foreground

if l(x,y) = probable and NS � T and NS > NF then : (8.25)

l(x,y) = shadow

Threshold T above is set to 4 – that is, half the neighbouring pixels. This process is

repeated until either no pixel labels are changed in an iteration, or the maximum

number of iterations are reached. Generally, thresholding with hysteresis converges

quite rapidly and only a few iterations are required [TRUC98 §4.2.2]. In this case, the

maximum number of iterations was set to 4. After thresholding is finished, any

remaining probable pixels are set to background.

Other methods of achieving similar results are mentioned in §8.3.4, but compared

with morphological operations, hysteresis thresholding was found to give good results

and to be quite fast – it is faster than OpenCV’s morphological functions that are

optimised for MMX processors.

Figure 8.10 shows hysteresis thresholding applied to parts of two frames from the

PETS-ICVS dataset. Note how the bulk of the changes happen in the first iteration for

both frames. This was observed consistently throughout the rest of the video stream.

The figure also shows what happens if the maximum number iterations is not limited

to 4 – the further refinement in the labelling is minimal and not really worth the extra

processing.

8.7.6 Background Model Adaptation

For the background model to remain useful, the motion detection module of the

program uses a background adaptation algorithm based on the two blending parameter

method (see §8.4.1). Parameter bkg is used to update those pixels that in the label map

l have been set to background or shadow, while frg is used for the foreground-

labelled pixels. Normally, frg � bkg, and the parameters are in range [0..1]. Setting

frg to 0, one gets the selective update method, while frg = bkg is the blind update

121

method. These two parameters are user-configurable and the following values were

used for the PETS datasets:

dataset bkg frg

PETS2001 dataset 4 0.03000 0.00150

PETS-ICVS datasets C and B 0.00010 0.00001

Background
subtraction result
(frame #10705)

Background
subtraction result
(frame #11980)

Iteration 1:
1566 pixels
changed

Iteration 1:
3260 pixels
changed

Iteration 2:
300 pixels
changed

Iteration 2:
846 pixels
changed

Iteration 3:
134 pixels
changed

Iteration 3:
405 pixels
changed

Iteration 4:
37 pixels
changed

Iteration 4:
228 pixels
changed

… …

Iteration 11:
(for iterations 5 to
11: a total of 65
pixels were
changed)

Iteration 13:
(for iterations 5
to 13: a total of
422 pixels were
changed)

Figure 8.10: Thresholding with Hysteresis – some results (PETS-ICVS dataset)

shadow
foreground

probable
background

122

For the standard deviation map, the update (8.9), was modified from:

2
),(

2
),(1),(

),(1),(

),()1(

),()1(

yxttyxtyxt

tyxtyxt

yxf

yxf

µασασ

αµαµ

−+−=

+−=

−

−
bkgfrg ααα or=

to:

),(),(1),(

),(1),(

),()1(

),()1(

yxttyxtyxt

tyxtyxt

yxf

yxf

µασασ

αµαµ

−+−=

+−=

−

−

(8.26)

to get rid of the expensive square-root.

The update parameters tend to be small fractions (like the values shown above).

This can give rise to loss of numerical accuracy for floating-point arithmetic. In the

case of this implementation, fixed-point integer math is used which can mean that

some of the values will be truncated to 0. To avoid these problems, it was decided to

do the background update only every number of N frames (set to 6 for this

application).

To keep the same rate of exponential forgetting (of the old background values), (8.26)

was modified slightly to take into account the fact that no update is done during the

in-between N-1 frames.

()

),(),(1),(

),(1),(

1

0

),()1(

),()1(

1

yxttyxtyxt

tyxtyxt

N

i

i

yxf

yxf

µασασ

αµαµ

ααα

−′+′−=

′+′−=

−=′

−

−

−

=
∑ (8.27)








′′=′

=

bkgfrg

bkgfrg

ααα
ααα

orand

orwhere

α′ is only calculated once in the beginning, so no extra cost is added to the

background update process (see §8.4 for how the exponential weighted sum is

derived).

8.7.6.1 Background Model Failure

Even though it is adapted regularly, the background model may fail if there is a

sudden and large illumination change, large camera movement, etc. The application

should detect such situations, instead of just inundating later processing phases with

detection errors and false positives.

123

The program keeps track of how many pixels are labelled as foreground. If this

number exceeds 50% of the potential pixels (that is, taking into account the mask built

by the calibration process to eliminate empty areas), an error message is reported on

screen and process terminates.

8.8 Results

In general, the background subtraction algorithm appears to perform quite well (at

least on the PETS datasets). The set of figures below contain selected images that give

some indication of where the algorithm works well and where it fails, in terms of the

problems mentioned in §8.6.

The algorithm detects shadows quite accurately, as can be seen from Figure 8.11,

where a person moves across the room and its outline is extracted quite well. Without

shadow detection, the object’s appearance would have been heavily distorted. The

algorithm is also robust to small-scale noise and small camera motion (~ �� SL[HOV���
Where the background subtraction algorithm fails to suppress noise, later on, the

tracking algorithm filters these out by using temporal constraints.

Figure 8.11: Results: detection of shadows (shadow shown in grey; PETS-ICVS dataset)

124

Small scale camera
movement. Light grey
pixels are noise that
has been correctly
eliminated.

camera movement larger
than a few pixels cause
some detection errors
(black areas), but most
noise is eliminated (grey
areas).

Figure 8.12: Results: noise due to camera movements

One problem that occurs mostly in the indoor scene is object fragmentation, when

objects have the same colour (and brightness) as the background (camouflage

problem). Some of these errors can be seen in Figure 8.13. This is solved later during

the tracking phase by means of region clustering.

Part of the object has
same colour as the
background (white wall)
and so is undetected,
causing fragmentation.
In addition, some bits are
mislabelled as shadow
(grey areas).

Part of the object has
same colour (and nearly
same brightness) as the
background.

Figure 8.13: Results: Camouflage and object fragmentation

Other detection errors were generated because of the foreground aperture problem,

presence of ghosts, and background elements that were displaced by the objects.

Examples of these are shown in the remaining figures. These errors are eventually

eliminated when the background adapts fully to them.

false
positives

125

The original
image with no
motion in it.

The blue car
moves away,
exposing the
ground below it.

Two objects
detected: the car
(on the left) and
its ghost on the
right (exposed
ground).

Figure 8.14: Results: The Ghost problem.

motion central pixels have
 the same colour and

do not appear to be
 moving.

Figure 8.15: Results: Foreground Aperture problem

Figure 8.16: Results: Moved background elements

chair (scene background)
moved by person

chair’s ghost

	Chapter 8
	Moving Object Detection

