
SOUNDBITE: A SPEECH SYNTHESISER FOR MALTESE

K. Bugeja, G. Mangion, M. Borg, C. Vella and C. Gafà

Department of Research and Development, Crimsonwing,
Lignum House, Aldo Moro Road, Marsa, Malta

{kbugeja, gmangion, mborg, cvella, cgafa}@research.crimsonwing.com

ABSTRACT
This paper presents Soundbite, a third-generation, real-
time, text-to-speech synthesiser for the Maltese lan-
guage. We describe the system’s software architecture
and briefly cover the data structures and modules com-
prising the system. We emphasise the architecture’s
adaptability to different module implementations and
conclude with a performance evaluation of the synthe-
siser.

Index Terms— speech synthesis, maltese, text-to-
speech, TTS, software architecture

1. INTRODUCTION

In this paper we describe the software architecture be-
hind Soundbite, a real-time text-to-speech (TTS) syn-
thesiser for the Maltese language. We discuss the issues
and design decisions made to satisfy the core require-
ments of the synthesiser.

The primary requirement was to synthesise Maltese
speech with a high level of naturalness and intelligibil-
ity with respect to actual spoken Maltese, limited to the
mode of neutral discourse. The system was further re-
quired to synthesise speech within time intervals suit-
able for real-time applications. To this effect, we dis-
cuss techniques, algorithms and data structures adopted
to ensure the required performance. Finally, the system
was required to support enriched text input, enabling the
synthesiser to apply volume, tonal and temporal effects
to the resulting output, and generate event notifications
where required. We thus discuss how these elements
were factored in the design of the synthesiser.

The architecture of Soundbite follows in the steps of
established generic TTS systems such as Festival [1],
Mary [2] and DIXI [3]. The core feature of these sys-
tems is a multi-level data structure in which linguis-

tic information is added and processed by the mod-
ules comprising the TTS pipeline. We adopted a sim-
ilar formalism within Soundbite, consisting of several
co-indexed data streams including lexical and control
token sequences, phrasing information, part-of-speech
(POS) and semiotic tags, phone and prosody specifica-
tion, event markers, diphone specification and ultimately
the audio signal.

2. ARCHITECTURE

Soundbite is a third-generation concatenative speech
synthesis engine based on a two-stage pipeline. Au-
tomatic unit selection methods are used to query effi-
ciently a speech database during runtime and determine
the best choice of units for generating utterances for re-
spective input text. Diphones are preferred over other
unit types as they provide better phonetic coverage for a
given database size [4, 5].

Figure 1 illustrates the two-stage pipeline by which
text is converted to speech. In the first stage (front-
end phase), orthographic text input is processed and a
phonetic specification is generated. In the second stage
(back-end phase), this specification is used to search for
matching units in a database. These units are then con-
catenated into a final speech utterance.

2.1. Structures

At its core, Soundbite uses a multi-level data structure
[6]. This comprises a hierarchy of linear data items,
or streams, which are augmented and enriched at every
step of the transformation, from text to utterance. At
each step, previous streams are preserved, as later stages
might still require them. We term this data structure, the
stream-map. The primary reason for favouring multi-



input partitioning

classification and tagging

verbalisation

intonation

diphone search

speech sequencer

orthographic
text stream

phoneme
specification

speech data

front end

back end

Fig. 1. Soundbite architectural overview

level data structures over other formalisms like string re-
writing is essentially the lack of flexibility afforded by
the latter [1]. Such methods transform and embellish an
orthographic textual representation at every stage in the
TTS pipeline, until it has been finally converted into an
utterance. Besides being unwieldy, these methods trans-
form data in such a way as to make it unavailable to later
stages in the pipeline.

2.2. Phoneme Specification

The Maltese alphabet contains 30 letters, some of which
are expressed as digraphs. Maltese operates with a sys-
tem of 24 consonantal phonemes and 11 vocalic sounds,
in addition to 7 diphthongal segments, each composed of
one of the eleven vocalic sounds together with an [I] or
[U] [7]. A phoneme specification is a sequence of such
phonemes that is eventually used to look up diphones
from a database, used to form the final utterance. The
phoneme specification is derived from input text.

2.3. Grapheme to Phoneme

The front-end phase transforms its input through a num-
ber of stages. The first stage cleans the input by applying
a filter, discarding ambiguous and illegal symbols, and
partitions it into meaningful units like words. Further
to partitioning, disambiguation and expansion stages re-

solve ambiguities like homographic words and expan-
sion of acronyms, dates and numbers. This is carried
out through the help of a semiotic classification process
which uses natural language processing to help in the
tagging. In contrast to languages like English, Maltese is
close to being a homographic language. The correspon-
dence between written symbols (graphemes) and sounds
(phonemes) is almost one-to-one. This strong correla-
tion between graphemes and phonemes allowed the use
of a set of rules for converting input from graphemes
to phonemes [4, 8]. Notwithstanding, Maltese text is
usually peppered with words that do not follow these
standard rules of grapheme-to-phoneme conversion, the
reason being that names, surnames and words in other
languages which are commonly used may have been
rendered as they appear in the original language, rather
that in transliteration. Accordingly, we employ a lex-
icon which helps in language disambiguation as well
as grapheme-to-phoneme conversion of these irregular
cases. We also employ the use of the lexicon to de-
termine stress and syllable length when these cannot be
immediately computed using standard rules. Finally, the
phoneme specification is augmented with breaks and in-
tonation information for the current speaker, before be-
ing fed to the back-end phase for rendering.

2.4. Diphone Search and Sequencing

In the back-end phase, the phoneme specification is con-
verted to a diphone stream and used to perform unit
look-up in a database of utterances. The diphone se-
quence that scores best, given factors like specification
similarity and unit join costs, is returned. At this stage,
the back-end also performs event sequencing; triggers
like phoneme, word, phrase and sentence boundary
events are encoded with the output, while the diphone
units are concatenated to return the desired utterance.

3. IMPLEMENTATION

3.1. Abstraction

An important design goal for Soundbite was that of pro-
viding the abstraction and flexibility required for test-
ing different algorithms without effecting changes to the
core architecture. The front-end and back-end phases
contain micro-pipelines, where each stage is exchange-
able and various algorithms can be plugged in. This



modular approach allows for an incremental develop-
ment strategy, where basic modules are eventually re-
placed with more sophisticated versions, or different al-
gorithms altogether.

3.2. Input Partitioning

Input to Soundbite is made up of data and control
streams. The data streams consist of orthographic text,
while the control streams define annotations like book-
marks and other special markers, and output modulators
like volume and tonal effects, amongst others. Sound-
bite also supports asynchronous input in the form of
abort and effect signals. Adapters are used to transform
input data from other formats, like SAPI [9], into some-
thing Soundbite can understand and process.

The input streams may span multiple pages of text.
To improve response times, input is segmented using a
moving window, whose size is configurable. The win-
dowed input is further processed and partitioned into
phrases. Any phrases estimated to straddle the current
window boundary are pushed to be processed in the next
windowing iteration. The partitioned phrases are then
processed sequentially by the front-end phase and sent
to the back-end for consumption.

3.3. The Stream-map

The stream-map is a multi-level data structure which
captures input transformations and embellishments
across the TTS pipeline. It provides a useful abstraction
for access to raw data in underlying structures. Accord-
ingly, it allows us to access typed-data at each level of
the hierarchy using both random-access and iterator pat-
terns. The stream hierarchy is managed transparently;
related streams (e.g. parent-child) store only differ-
ences, in order to minimise memory footprint. Further-
more, streams are encoded as sparse linear data items
in a map data structure based on the Standard Template
Library map [10].

3.4. Semiotic Analysis and NLP

The text classification problem [11,12] is addressed via a
three-stage process, namely, Open Classification, Natu-
ral Language Processing and Closed Classification. Ini-
tially, during the Open Classification stage [13], every
input token is analysed and associated to one or more
semiotic classes. This is accomplished through the use

of pattern matching. Every semiotic class has an asso-
ciated regular expression, which captures the possible
relationship of a lexeme to a class. Lexemes support
Unicode characters and are therefore converted a priori
to an 8-bit encoding that preserves graphemes specific
to Maltese. The stream-map is embellished with a new
stream containing the potential semiotic classes for each
token.

During the next stages, we make use of a domain-
specific scripting-language, an if − then rule-based
analyser and decoder, which is also supplied with con-
structs for accessing and modifying information in the
stream-map. Rules exploit pattern-matching and the
stream-map to simplify authoring; they provide an ab-
straction which allows one to focus on reasoning about
Maltese grammar and semiotic classes rather then get-
ting bogged down in implementation details. For each
rule, the antecedent is comprised of a series of ex-
pressions. Starting with the current token, the first ex-
pression in the antecedent is evaluated; if a match is
recorded, the second expression is applied to the sub-
sequent token. A rule is matched, when the conjunc-
tion of the evaluation of all expressions is true, in which
case, the consequent fires, performing an action on the
stream-map such as adding, removing or updating infor-
mation. An advantage of using a domain-specific lan-
guage is that the rule authors need only be acquainted
with the problem domain and how to express conditions
and actions. The system automatically handles details
such as performing boundary checks against the current
position and consecutive tokens. Rules are formulated
in a language similar to English. For example, the rule
below, states that if the current token contains a word in
Maltese and is tagged as a part-of-speech matching ar-
ticle, but the following token is not a hyphen, then the
rule fires leading to the removal of the article tag.

〈Lang(maltese) POS(article)〉
!Semiotic(hyphen) → DelPOS(article)

This approach proved so powerful and flexible that we
were able to simultaneously tackle both language disam-
biguation and classification, and code-switching. After
the token stream has been classified, tokens are then sent
to the verbalisers [13] corresponding to their semiotic
type.



3.5. Front-end, back-end concurrency

A design goal of our speech synthesiser is that of being
able to work with modest hardware, but exploit com-
putational resources when available. Accordingly, af-
ter identifying the back-end phase as the most compu-
tationally expensive process in all of the TTS pipeline,
we sought to increase the concurrency of our system in
order to improve its response time. We cast the front-
end and back-end phases as producer and consumer pro-
cesses, the front-end producing phoneme specification
streams, and the back-end consuming these specifica-
tions. The consumer processes execute asynchronously
of the producer and one another. The system scales in
the number of consumers, depending on the capabili-
ties of the host machine. Increasing the number of con-
sumers may introduce race conditions, whereby com-
pleting jobs out of sequence, consumers may reverse the
order of phrases in the output. This has been handled
through the introduction of a Sequencer, an entity which
assigns a unique sequence identifier, in the form of a
slot, to each job scheduled for consumption, ensuring
that notwithstanding which job finishes first, the output
is always orderly.

The output can be consumed in many different ways
through the application of the Output Device abstrac-
tion. Output devices may be implemented as encoders
and file writers (e.g. MP3 file output), null devices, or
even to redirect output to a suitable system audio de-
vice. The Sequencer and Output Devices form a subject-
observer system. Output Devices register with the Se-
quencer such that whenever contiguous slots are avail-
able for consumption, they are notified by the Sequencer
and supplied with the respective slot information.

4. RESULTS AND EVALUATION

We have evaluated the response time of Soundbite with
different input text sizes of 100 × 2k tokens, where
0≤k≤9. The evaluation was performed on a machine
with an Intel i5 2.67GHz quad-core CPU and the results
are shown in figure 2 above. The response time is influ-
enced by the window size used in partitioning the input
text. For this test, we chose the value of 1024 input to-
kens for the window size to amplify the partitioning ef-
fect. These results validate the use of the window-based
input text partitioning technique in Soundbite, in that
there is only a minimal increase in response time beyond

10
2

10
3

10
4

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

text size (number of input tokens)

m
ill

is
e
co

n
d
s

Fig. 2. Average response times (msec.) for different in-
put text size. Error bars show 95% confidence intervals.

the 1024-token mark when the input text in effect dou-
bles in size for each new measurement. The response
time seems to increase in linear proportion to the input
size up to the window size specified for the test. Beyond
this threshold, the response time still increases in linear
proportion but at a much lower rate. We speculate that
inputs that fit within one window are processed from be-
ginning to end, taking substantial processing time as in-
dicated by the steep incline of the plot. Beyond this, we
attribute the additional time, indicated by the shallow in-
cline of the plot, to the pre-processing performed on the
complete input prior to processing the first window.

5. CONCLUSION

We have described the challenges encountered and the
solutions adopted for the design and implementation of
Soundbite. While the system meets the intended require-
ments, it is ripe for further work, particularly in the areas
of natural language processing, prosody modelling and
unit selection techniques. Beyond this, we also hope that
Soundbite’s open and modular architecture will encour-
age further work in the field of Maltese speech synthesis.



6. REFERENCES

[1] Paul Taylor and Alan W Black and Richard Caley,
“The architecture of the festival speech synthesis sys-
tem,” in In The Third ESCA Workshop in Speech Syn-
thesis, pp., 147–151.

[2] Marc Schröder, “The german text-to-speech synthe-
sis system mary: A tool for research, development
and teaching,” in International Journal of Speech
Technology, pp., 365–377.

[3] Paulo, Sérgio and Oliveira, Luı́s C. and Mendes,
Carlos and Figueira, Luı́s and Cassaca, Renato
and Viana, Céu and Moniz, Helena, “Dixi —
a generic text-to-speech system for european por-
tuguese,” in Proceedings of the 8th international
conference on Computational Processing of the Por-
tuguese Language, Berlin, Heidelberg, 2008, pp., 91–
100, Springer-Verlag.

[4] M. Borg and K. Bugeja and C. Vella and G. Man-
gion and C. Gafà, “Preparation of a free-running text
corpus for maltese concatenative speech synthesis,”
in In : 3rd Int. Conf. on Maltese Linguistics, Valletta,
Malta, 2011.

[5] Bozkurt, Baris and Ozturk, Ozlem and Dutoit,
Thierry, “Text design for TTS speech corpus build-
ing using a modified greedy selection,” pp., 277–280,
2003.

[6] Paul Taylor and Alan W. Black and Richard Caley,
“Heterogeneous relation graphs as a mechanism for
representing linguistic information,” Speech Commu-
nications, vol. 33, pp. 153–174, 2001.

[7] Borg, Albert and Azzopardi-Alexander, Marie,
Maltese, Routledge, London & New York, 1997.

[8] Micallef, Paul, A Text To Speech System for Maltese,
Ph.D. thesis, University of Surrey, 1998.

[9] Microsoft Corporation, “Microsoft speech api,”
November 2012.

[10] Alexander Stepanov and Meng Lee, “The stan-
dard template library,” Tech. Rep., WG21/N0482,
ISO Programming Language C++ Project, 1994.

[11] Sproat, R. and Hirschberg, J. and Yarowsky, D.,
“A corpus-based synthesizer,” in Proceedings of the

International Conference on Spoken Language Pro-
cessing, vol., pp., 563–566.

[12] Sproat, R., “English noun-phrase accent prediction
for text-to-speech,” Computer Speech & Language,
vol. 8, no. 2, pp. 79–94, 1994.

[13] Taylor, P., Text-to-Speech Synthesis, Cambridge
University Press, 2009.


