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Abstract. In this paper, we propose to incorporate prior knowledge
from sign language linguistic models about the motion of the hands
within a multiple hypothesis tracking framework. A critical component
for automated visual sign language recognition is the tracking of the
signer’s hands, especially when faced with frequent and persistent occlu-
sions and complex hand interactions. Hand motion constraints identified
by sign language phonological models, such as the hand symmetry condi-
tion, are used as part of the data association process. Initial experimental
results show the validity of the proposed approach.
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1 Introduction

Hand tracking is a critical component of vision-based automated sign language
recognition (ASLR) systems [1], as the hands constitute the main articulators for
signing. The position of the hands, their motion, and the shapes that the hands
take, all are discriminative linguistic features that contribute to the semantic
meaning in sign recognition.

Object tracking is a very challenging problem, mostly due to the noisy,
compressed nature of videos, the presence of motion blur, the loss of depth infor-
mation, and the high variability in illumination and scene conditions. In multi-
object tracking, the interaction between objects and occlusion events, make
consistent labelling of objects across video frames an especially hard problem.

For ASLR in particular, tracking faces problems of frequent and persistent
hand and face occlusions, and complex hand motions and interactions (like
crossovers and bounce-back events), since signing occurs within a small vol-
ume of space centred on the signer. The non-rigid and articulated nature of the
hands gives rise to large variations in pose and appearance, as well as issues of
self-occlusion and self-shadowing. Keeping track of both (unadorned) hands over
long video sequences is a very challenging problem, often fraught with the loss of
hand identity and mismatch errors, which can severely degrade the performance
of subsequent sign recognition modules. Thus, the core issue in multi-object
tracking, like ASLR, is data association, i.e., determining which acquired obser-
vation corresponds to which of the objects being tracked [13].
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Earlier works in tracking adopted a deterministic approach for data associa-
tion, where the correspondences depend only on the preceding and current video
frame observations – thus termed f2f tracking. These methods generally define
a cost function for associating each object at time t − 1 to observations at time
t, based on some motion constraints (e.g. proximity) and/or similarity measures
(e.g., appearance or shape) [10]. Minimisation of the cost function is then for-
mulated as a combinatorial optimisation problem, which can be restricted to
1-to-1 associations only, thus allowing for the use of optimal linear assignment
algorithms such as the Kuhn-Munkres Hungarian algorithm [13]. In [6] a voting
algorithm is used for data association, while [12] adopts a global nearest neigh-
bour rule-based approach. These deterministic approaches are forced to make a
hard association decision in each video frame, and thus a single incorrect asso-
ciation at a particular point in time affects all of the subsequent tracking – they
can’t recover from object label switches, and loss of object IDs. Later works,
like that of [7], extend the data association process to multi-frame association,
i.e., finding object and observation correspondences over a set of consecutive
frames. This allows for the application of more constraints on temporal and spa-
tial coherency. The data association problem now becomes a graph theoretic
problem, i.e., finding the best unique path for each object within the set of
frames, offering a degree of robustness against occlusion events that are shorter
in duration than the temporal window used for the data association.

In contrast to f2f and multi-frame methods, statistical approaches to multi-
object tracking like JPDAF (joint probabilistic data association filter) [3], use
soft association decisions, whereby the tracked object is associated with all the
feasible observations that it can be matched to, and is updated via a weighted
combination of these observations. The multiple hypothesis tracking (MHT)
algorithm [4,9] adopts a different strategy than the single-hypothesis tracking
methods discussed earlier that only keep a single hypothesis about the past.
Instead, the MHT algorithm employs a deferred decision-taking mechanism for
data association, by keeping multiple hypotheses about the past, and then prop-
agating these hypotheses into the future in anticipation that subsequent data will
resolve the uncertainty about which of the multiple hypotheses is the correct one.
Because of the exponential increase in the number of hypotheses created by the
MHT algorithm, pruning is required – this is accomplished by a sliding temporal
window, as well as by discarding low-probability hypotheses. In [1], MHT is used
within an ASLR context for hand tracking in the presence of skin segmentation
errors. They also make use of an anatomical hand model to eliminate anatom-
ically impossible hypotheses. Other tracking approaches include: tracklet-based
tracking, where detection of tracklets is followed by the subsequent linking of
the tracklets into longer tracks [5]; Bayesian network based tracking [8]; tracking
based on random finite sets. A review of tracking methods is found in [10,11].

In this paper, we propose an MHT-based framework for our ASLR system, that
incorporates prior knowledge about the constraints on hand motion as described
by sign language linguistic models. We believe that the use of this knowledge yields
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an improvement in the tracking performance of MHT, especially when the tracker
is dealing with complex hand interactions and occlusion events.

Sign language phonological models identify a number of constraints about
hand motion, and the position of one hand in the signing space in relation to
the other one. These constraints could be exploited by an MHT-based tracker in
order to reduce the space of possible hypotheses. For example, the “symmetry”
and “dominance” conditions limit the role of the non-dominant hand to serve as
either a duplicate articulator (giving rise to the so-called “h2-S” signs), or as a
place of articulation for the dominant hand (so-called “h2-P” signs). In “h2-S”
signs, the articulation of h2 (the non-dominant hand) is symmetric to that of h1
(the dominant hand), and both must have the same handshape; while in “h2-P”
signs, h2 is stationary and h1 moves using h2 as a place of reference against
which the motion is performed [2]. Examples of “h2-P” and “h2-S” signs can be
seen in Figures 2 & 3 respectively.

The main contribution of our work is the proposed integration of these hand
motion constraints within the probabilistic framework of MHT. In particular,
these constraints are incorporated within the hypothesis evaluation equation of
the MHT algorithm via the use of probabilistic density maps. We demonstrate
our approach by implementing one of these constraints, mainly the symmetry
constraint “h2-S”. Since symmetric hand motions can sometimes suffer from out-
of-sync issues, our proposal takes this into account. While the MHT algorithm
has been used within the context of ASLR, for example in [1], to the best of our
knowledge there are no works that implement what we propose here.

Our use of the hand symmetry constraint, bears some resemblance in idea
to the “common motion constraint” as described by [14,15]. In [14] the special
problem of multi-target tracking is discussed, where a group of targets are highly
correlated in their motion, usually exhibiting a common motion pattern with
some individual variations; e.g., dancing cheerleaders.

The rest of this paper is organised as follows: Section 2 gives an overview
of our ASLR system and tracking framework; Section 3 outlines the MHT algo-
rithm which forms the basis of our tracking framework; Section 4 describes our
proposed approach; Section 5 reports initial experimental results; We conclude
the paper in Section 6 and highlight future work.

2 Overview of Our System

The multiple hypotheses based tracking framework proposed in our paper forms
part of an ASLR system. The work described here concentrated on (1) object
detection, (2) tracking, and (3) the incorporation of sign language hand motion
constraints within the tracking process. The object detection stage locates the
face, computes skin and motion likelihoods, which in turn serve for detecting
the hands – these provide the “observations” that are fed to the second stage.
The tracking stage is made up of a number of steps: track prediction, gating,
hypotheses formation about the associations of observations to tracks, followed
by the adjustment of hypotheses’ likelihoods, and their evaluation and even-
tual pruning. The adjustment of the likelihoods makes use of sign language
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hand motion constraints, and constitutes the main contribution of this paper.
Additional information can also be incorporated into this step, like kinematic
hand/upper body models and contextual information, via the use of the same
mechanism and principles – this is described later on as future work. Finally,
the most likely hypothesis about the position and motion of the hands is fed to
the sign recognition module of our system, which is still works in progress.

3 The MHT Algorithm

Reid [9] was the first to describe MHT using a strong mathematical formula-
tion. As mentioned in the introduction, in contrast to single-hypothesis tracking
methods that make a hard decision in each time step as regards to which obser-
vations are associated with which targets, the idea behind the MHT algorithm is
to generate all possible association hypotheses at any one time step and then rely
on future information to resolve any ambiguities and to select the most probable
hypothesis amongst them. The hypothesis generation stage implicitly caters for
various observation-to-track association scenarios, such as new track initiation
and termination (e.g., targets entering/leaving the camera’s FOV), targets which
are unobserved for some time, and observations arising from noise (false alarms).
As a new set of observations arrives with each new time step, newly-generated
hypotheses are added to the previous ones, thus forming a tree structure.

To avoid a combinatorial explosion in the number of hypotheses generated
and maintained by the algorithm, a number of pruning techniques are applied
to make the tracking more tractable – these include pruning low probability
hypotheses, specifying a maximum number of hypothesis, N -scan pruning, and
applying clustering techniques [4].

Hypotheses clustering helps to divide the tracking problem into independent
and smaller sub-problems which can be solved separately. First, observations are
gated with existing tracks; any observations falling outside the validation gate
of a track are considered to have a zero probability of being associated with that
track, and thus can be safely ignored (assuming the statistical model used to
obtain the validation gate is valid). This helps to remove those observation-to-
track associations which are considered to be physically impossible. Grouping
collections of tracks linked by observations then gives rise to clusters of hypothe-
ses, which in turn results in spatially disjoint hypothesis trees [16]. In N -scan
pruning, a sliding temporal window is applied to the tree of hypotheses. Within
this window, multiple hypotheses are maintained and propagated in time as the
window slides forward. But at the rear end of the window, a hard decision is
made on the most likely hypothesis taking into consideration future observa-
tional evidence present in the window. Thus the depth of the hypotheses trees
are limited to be at most equal to the window size. In [4,17] it was shown that
MHT can achieve good tracking performance with quite shallow tree depths.

In [17], the efficiency of the MHT is greatly improved via the use of Murty’s
algorithm, which addresses the main inefficiency of the original MHT – mainly
that a lot of computation is wasted on the generation and propagation of many
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hypotheses which in the end are discarded and never used. This is achieved by
finding the m-best associations hypotheses in the current time step instead of
using all possibilities. More detail on the MHT algorithm can be found in [3,4].

4 MHT and Sign Language Constraints

In this section we will describe our MHT-based system, the features we have
selected for detecting the objects to be tracked (observation acquisition), and the
chosen target representation. Then we will describe the proposed incorporation
of sign language hand motion constraints within our tracking process.

4.1 Features for Object Detection

Choosing the right features to be used in a multi-object tracking system is an
extremely important task – many times, the choice of features depends on the
tracking domain in question. Ideally the chosen features should be unique, in
order to facilitate the detection of the objects to be tracked (the observations),
and should be computationally efficient to extract [10]. We use motion-based
features in our ASLR tracking system. To make the extraction of these features
as efficient as possible, we apply pre-filtering based on skin colour and frame
differencing. We also employ a face detector, both for face localisation purposes,
as well as for performing system initialisation, such as that of learning the skin
colour model. A tracking by detection approach is adopted for face localisation,
via the use of the Viola-Jones face detector [26]. The assumption behind our face
localisation approach is that the face of the signer is frontal (or near-frontal) with
respect to the camera’s viewpoint. Once the face of the signer is detected, a body-
centred coordinate system is defined and scaled according to the size of the face.
To improve the accuracy of face localisation, a constant-velocity Kalman filter
is used to smooth out the noise in global head motion.

We employ an adaptive skin colour classifier [18] for generating the skin
likelihood map. The skin model used by this classifier is initialised via face
detection as follows: a 24 × 24 mask, generated off-line using several hundred
images of different persons, is applied to the face region that is found by the face
detector – this mask indicates which pixels within the face region are most likely
to be skin; then working within the normalised RGB colour space, a parametric
skin colour model is estimated.

A motion likelihood map is generated via a weighted frame differencing algo-
rithm. Combined together, the skin likelihood and motion likelihood maps, serve
as a fast pre-processing stage by filtering out most areas of the image (moving
skin-coloured regions are expected to be small in size and number). Thus we
avoid having to run the costlier feature extraction process over the full image.

The motion-based features used in our ASLR system consist of clusters of
KLT features (corners) exhibiting a similar affine motion model. KLT features
are first located within moving skin regions (as filtered by the skin and motion
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likelihood maps) using the method described in [19] based on a goodness-to-
track quality metric. The motion information of the chosen KLT features are
then obtained via a multi-scale sparse optical flow algorithm. Similar to the
work of [12], and relying on the notion of “common motion constraint”, we
apply an iterative method for clustering KLT features by their affine motions.
The RANSAC scheme is used for robust affine motion model fitting, because
of its high breakdown point (can tolerate up to 50% outliers). Finally, the clus-
ters of KLT features and their associated affine motion models constitute the
observations that will be fed to the MHT stage of our tracking system

zti =
{
{kj}∀j∈Ci

,At
i

}
(1)

where kj is the jth KLT feature, Ci is the ith cluster of KLT features, and At
i is

the affine motion model fitted to the KLT features {kj} of the ith cluster

At
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⎡
⎣

a0 a1 a2
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0 0 1

⎤
⎦ (2)

4.2 Target Representation

Many different representations have been used in the object tracking literature
such as: appearance-based representations (templates, active appearance mod-
els, etc.), motion-based representations, and shape-based representations (silhou-
ettes, contours, primitive geometric shapes, articulated shape models, skeletal
models, etc.) [10]. We represent objects (the hands and face) by their affine
motion model A, centroid (x, y), and their spatial extent (bounding box having
width w and height h). Assuming a linear dynamic process, a constant-velocity
Kalman filter is used with the following state x and state transition matrix F,
where I16×16 is an identity sub-matrix

x =

[
x, y,

w

2
,
h

2
, a0, a1, · · · , a5, ẋ, ẏ,

ẇ

2
,
ḣ

2
, ȧ0, ȧ1, · · · , ȧ5

]T

F =
[
I16×16 I16×16 · dt
016×16 I16×16

]
(3)

This Kalman filter allows us to predict the position of the hands x̄t
j at time t. The

predictions of the width w/2 and height h/2 at time t given by the KF are used
for occlusion prediction by checking for bounding box overlap of the 2 hands
– this information is used to set the occlusion terms of the MHT. The affine
motion terms a0 to a5 in the KF are for smoothing the target’s affine motion
model A, used for KLT feature clustering and replenishment (see Section 4.1).



Multiple Hypothesis Tracking with Sign Language Hand Motion Constraints 213

Fig. 1. Use of the symmetric motion constraint in tracking

4.3 Tracking with Sign Language Hand Motion Constraints

Our proposal in this paper is to incorporate constraints on hand motion based on
sign language linguistic models. In particular, we concentrate on one such con-
straint from the sign language literature called the “symmetry” condition (“h2-
S”) [2]. This states that for the majority of 2-handed signs, the non-dominant hand
serves as a duplicate articulator, i.e., its movement mirrors that of the dominant
hand. Figure 1 above illustrates in a schematic way, how we integrate the symmet-
ric motion constraint within the tracking process. Our tracking process assumes
that the 2 hands are the main moving objects in the scene, and that the right and
left hands start on the right and left side of the body respectively. Using the face
detection results for time t, we first identify the body-centred line of symmetry Ls.
Currently we ignore any sideways leaning of the signer’s upper body and keep Ls

oriented vertically. Then during the MHT hypothesis generation stage, given an
association hypothesis ψt

i that associates object T1 with observation z2, we locate
the corresponding point Cs reflected by the line of symmetry Ls, and define the
symmetric motion likelihood volume Vs, depicted in Figure 1. Currently we adopt
a non-parametric approach for the pdf of Vs, i.e., using a probability density map.
For object T2, the probability of associating it with the set of observations in
its validation gate is then computed via a weighted combination of the standard
MHT’s observation-target probability ([3,4]) and the probability given by our
density map:

N ′ (zti
)

� α · N (
zti |x̄t

j , Σ
t
ij

)
+ (1 − α) ·MVs

t (4)

where MVs
t is the probability density map of Vs at time t, and α is a weighting

factor. Continuing with the example depicted in Figure 1, the hypothesis that
object T2 is associated with observation z3 now has a stronger bias, because of
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the addition of MVs
t term. An issue that our proposed incorporation of symmetric

motion has to contend with is when the 2 hands are moving slightly out of sync –
one hand lags behind the other in its mirrored trajectory position. We solve this
issue by adopting a temporal window approach for the update of the probability
density map MVs

t with a forgetting mechanism with rate γ

(
MVs

t

)′
= γ

(
MVs

t

)
+ (1 − γ)

(
MVs

t−1

)
(5)

5 Experiments

In order to evaluate the effectiveness of our approach, video sequences from the
ECHO Sign Language (NGT) Corpus [21] are used. These are colour sequences,
with 352 × 288 resolution, running at 25 fps, and taken with a fixed camera.
Although signing occurs within a simplified environment (indoors, constant illu-
mination, plain background, signer wearing dark clothes), these sequences exhibit
frequent occlusions of the hands and the face, often of medium to long duration,
and with lots of complex hand interaction (‘bounce backs’, ‘crossovers’) events.
Thus we believe that videos from this corpus constitute a good test bed for our
proposed tracking system. As no tracking-related ground truthing is available for
these video sequences, the ViPER-GT toolkit [20] was used to generate ground
truth of the face and the hands for around 6000 video frames – via the visual
annotation feature of ViPER-GT of the positions and the bounding boxes.

5.1 Experimental Setup

Our system was implemented in C++ and makes use of the OpenCV library. Our
MHT implementation is based on the original MHT library reported in [17]; but
it also includes additional modifications as suggested in [24], mainly for compu-
tational efficiency reasons, and the addition of the occlusion terms as described
in [22]. Our MHT implementation can benefit from further improvements, such
as more use of parallelism, especially for handling the disjoint hypothesis clusters
– future work will address this.

Several algorithms used in our system have a number of configurable param-
eters – many of these values were set empirically. For the MHT algorithm, the
temporal sliding window (used for N -scan pruning) was set to 25 frames (1 sec-
ond) – this is adequate as the majority of signs last less than 1 second, thus
achieving a balance between the size of the mantained hypothesis tree for sign
recognition accuracy and the real-time execution speed requirement. The a priori
probability values for track detection pdet, track termination pterm, and occlu-
sion events poccl, were configured as 0.7, 0.1 and 0.2 respectively (subject to the
condition pdet+pterm+poccl = 1). And the Poisson expectations for false alarms
and new tracks were set to: λfa = 3, and λnew = 1, respectively. Even though
the number of objects being tracked in an ASLR context is fixed (2 hands and a
face), the parameter values for new tracks (λnew) and track termination (pterm)
must cater for the potential loss and recovery of the targets of interest, as well
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as handling cases where multiple observations are returned for a single target
(e.g., when apart from the hand, the arm is also visible).

Three experiments were performed. For the first experiment, we used a stan-
dard frame-to-frame (single hypothesis) tracking system and ran it on the men-
tioned video sequences – this system, referred to as ‘baseline F2F’ here, serves
as a lower performance bound against which MHT-based tracking will be com-
pared. The ‘baseline F2F’ system makes use of the same object detection and
representation (KLT features) stage as the proposed system, but instead uses
global nearest neighbour (via the Kuhn-Munkres Hungarian algorithm) for data
association and a simplified rule-based track maintenance system. The second
experiment made use of our MHT-based tracking system, but without the incor-
poration of the sign language hand motion constraints, i.e., using a regular MHT
algorithm. The third and final experiment is the one making use of our contri-
bution described in this paper – referred to as ‘MHT+SL constraints’ here.

The three experiments were executed on a 2.0 GHz PC with an Intel dual
core CPU, and 16Gb of RAM. Tracking executed in real-time (at 20 to 23 fps).

5.2 Evaluation of Tracking Results

For evaluation purposes, we adopted the CLEAR metrics MOTP and MOTA
[23]. MOTP (multiple object tracking precision) measures how well the positions
of the hands are estimated by the tracker

MOTP =

∑
i,t di,t

Σtct
(6)

where di,t is a distance score between the ground truth object gi,t and its cor-
responding tracker output; ct is the number of successfully tracked objects at
time t. In our evaluation we chose the overlap ratio between the ground truth’s
bounding box and that of the tracker output as the distance score di,t = |gi,t∩oi,t|

|gi,t∪oi,t|
MOTP score values are in range [0..1], with 0 indicating a perfect match.

MOTA (multiple object tracking accuracy) measures the number of mis-
takes that the tracker makes in terms of missed object detections (false nega-
tives, FNs), false positives (FP s), and the number object mismatches (object
label/identity switches, MMEs) that occur.

MOTA = 1 −
[∑

t {FN t + FP t + MMEt}∑
t gt

]
(7)

Thus MOTA gives an indication of the tracker’s performance at keeping accurate
trajectories, independent of the tracker’s precision in estimating object positions.
MOTA score values can range from negative values to 1.0 (perfect accuracy).

5.3 Discussion

The results of the quantitative evaluation using the CLEAR metrics are given
in Table 1 on the next page. Also shown are the normalised FN , FP , and
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Table 1. Comparative performance of MHT with SL constraints

Method MOTP MOTA FN/
∑

t gt FP/
∑

t gt MME/
∑

t gt
baseline F2F 0.550 0.022 0.298 0.371 0.309

MHT 0.603 0.281 0.236 0.325 0.158

MHT+SL constraints 0.601 0.313 0.225 0.328 0.134

Fig. 2. Tracking results of regular MHT (top) and “MHT+SL constraints” (bottom).
Correct tracks of the dominant hand (filled red circles) and non-dominant hand (filled
green circles), while pruned hypotheses are shown as open circles.

mismatch rates. As can be seen, our proposed approach has an overall better
performance than regular MHT. While there is only a marginal improvement in
tracking precision (MOTP), tracking accuracy (MOTA) exhibits a more evident
improvement. The factor that contributes most to this improvement in accuracy
is the reduced number of object label mismatches (MMEs). In other words,
the inclusion of constraints on hand motion based on sign language linguistic
models increases the robustness of the tracking system to identity switches of
the 2 hands. Figures 2 & 3 on the facing page illustrate this qualitatively.

The top row in Figure 2 gives the results of the regular MHT, while the
bottom row shows the results of our approach. Prior to the first video frame
shown, the hands were partially occluding each other near the neck area. Upon
emerging from the occlusion event, the non-dominant hand in the regular MHT,
is incorrectly matched to spurious observations (caused by shadows on the neck
created by head motion). In our approach, the correct tracking of the dominant
hand plus the rule on symmetric hand motion, help to increase the likelihood of
the correct hypothesis of the non-dominant hand. Thus, with support from the
dominant hand, the non-dominant hand is tracked successfully throughout all
the frames – in contrast, the regular MHT only recovers successfully from the
occlusion event in the last video frame of Figure 2.

In Figure 3, more results from our proposed tracking system, in the presence
of complex hand interactions and cross-over events, are shown. Our approach
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Fig. 3. Tracking in the presence of complex hand interactions and cross-over events.

exhibits a marginal increase in the number of FP s over regular MHT. While the
reason behind this could not be ascertained, our analysis of the tracking results
showed that a large number of the FP observations are caused by a too simplis-
tic representation of hand motion, mainly the affine motion model adopted for
KLT feature clustering and the constant-velocity Kalman filters. Signing exhibits
abrupt hand motion with many discontinuities in hand trajectories – something
which cannot be easily modelled with affine motion and constant-velocity KFs.
To minimise feature cluster fragmentation and the FPs that arise from it, we
could potentially use an IMM (interacting multiple model) approach, where sev-
eral KFs, tuned to different hand manoeuvres, are run in parallel. In [25], an
IMM is applied for tracking the hands in a natural conversation context.

6 Conclusion

We have proposed a mechanism for integrating prior knowledge about hand
motion constraints described by sign language phonological models into our
MHT-based tracking framework, in order to provide better tracking robustness
especially in the presence of occlusion and hand interaction events. The con-
straints are integrated within the hypothesis evaluation mechanism of MHT and
defined in terms of probabilistic density maps. We demonstrated this approach
via the implementation of one such constraint – the hand symmetry condition.
Experimental results demonstrate the effectiveness and the prospect of our app-
roach, especially in improving tracking accuracy. And since hand tracking is
central to sign recognition, it is expected that our approach will show a marked
improvement in sign recognition once it is incorporated within the ASLR process.

Future work will look into: (1) adding more constraints into the tracking
process from sign language phonological models (e.g. “h2-P”); (2) look into the
use of handshape information both in the tracking process and the addition
of phonological constraints related to the handshape; (3) integrate the hand
motion constraints in a more principled and structured way, perhaps adopting
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a parametric or semi-parameteric probabilistic approach instead of the current
non-parametric representation; (4) and employ better motion models for track-
ing the hands, instead of the current use of affine motion models and constant
velocity Kalman filters, perhaps using IMMs to handle abrupt hand motions.
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