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Abstract

This paper presents the visual surveillance aspects of a distributed intelligent
system that has been developed in the context of aircraft activity monitoring.
The overall tracking system comprises three main modules — Motion Detection,
Object Tracking and Data Fusion. In this paper we primarily focus on the object
tracking and data fusion modules.

1 Introduction

This paper describes work undertaken on the EU project AVITRACK3. The
main aim of this project is to automate the supervision of commercial aircraft ser-
vicing operations on the ground at airports (in bounded areas known as aprons).
A combination of visual surveillance algorithms are applied in a decentralised
multi-camera environment with overlapping fields of view (FOV) [1] to track
objects and recognise activities predefined by a set of servicing operations. Each
camera agent performs per frame detection and tracking of scene objects, and
the output data is transmitted to a central server where data association and
fused object tracking is performed. The system must be capable of monitoring
a dynamic environment over an extended period of time, and must operate in
real-time (defined as 12.5 FPS with resolution 720×576) on colour video streams.

The tracking of moving objects on the apron has previously been performed
using a top-down model based approach [2] although such methods are generally
computationally expensive. An alternative approach, bottom-up scene tracking,
refers to a process that comprises the two sub-processes motion detection and
object tracking ; the advantage of bottom-up scene tracking is that it is more
generic and computationally efficient compared to the top-down method.

3 This work is supported by the EU, grant AVITRACK (AST3-CT-3002-502818).
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Motion detection methods attempt to locate connected regions of pixels that
represent the moving objects within the scene; there are many ways to achieve
this including frame to frame differencing, background subtraction and motion
analysis (e.g. optical flow) techniques. Background subtraction methods, such
as [3], store an estimate of the static scene, which can be accumulated over a
period of observation; this background model is subsequently applied to find
foreground (i.e. moving) regions that do not match the static scene.

Image plane based object tracking methods take as input the result from the
motion detection stage and commonly apply trajectory or appearance analysis
to predict, associate and update previously observed objects in the current time
step. The tracking algorithms have to deal with motion detection errors and
complex object interactions in the congested apron area e.g. merging, occlusion,
fragmentation, non-rigid motion, etc. Apron analysis presents further challenges
due to the size of the vehicles tracked, therefore prolonged occlusions occur
frequently throughout apron operations. The Kanade-Lucas-Tomasi (KLT) fea-
ture tracker [4] combines a local feature selection criterion with feature-based
matching in adjacent frames; this method has the advantage that objects can be
tracked through partial occlusion when only a sub-set of the features are visible.
To improve the computational efficiency of the tracker motion segmentation is
not performed globally to detect the objects. Instead, the features are used in
conjunction with a rule based approach to correspond connected foreground re-
gions; in this way the KLT tracker simultaneously solves the problems of data
association and tracking without presumption of a global motion for each object.

The data fusion module combines tracking data seen by each of the individ-
ual cameras to maximise the useful information content of the observed apron.
The main challenge of data fusion for apron monitoring is the tracking of large
objects with significant size, existing methods generally assume point sources [1]
and therefore extra descriptors are required to improve the association. People
entering and exiting vehicles also pose a problem in that the objects are only
partially visible therefore they cannot be localised using the ground plane.

In this paper, Section 2 introduces the use of visual surveillance in ambient
intelligence systems. Section 3 reviews the per camera motion detection, objects
tracking and categorisation. Section 4 describes the data fusion module and
Section 5 contains evaluation of the presented methods.

2 Visual Surveillance for Ambient Intelligence

A real-time cognitive ambient intelligence (AmI) system requires the capability
to interpret pervasive data arising from real-world events and processes acquired
from distributed multimodal sensors. The processing systems local to each sen-
sor require the capability to improve the estimation of the real-world events by
sharing information. Finally, this information is shared with the end users, sug-
gesting decisions and communicating through human terms to support them in
their tasks. The work presented on the AVITRACK project represents the initial
steps in the development of such a system, with intelligent interpretation of the
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scene via distributed vision based agents. In the longer term it is anticipated
that the vision based agents will be able to share information with e.g. GNSS
location agents, PTZ camera agents, infra-red camera agents, radar-based agents
and RFID tag agents etc. The sharing of information between multimodal sen-
sors provides a more accurate, more complete, representation of the events as
they unfold in the scene.

The long term aim of airport surveillance in this context is to provide the end
users with the capability to use the information distributed by the AmI system.
The cognition of human actions through aural, visual and neural sensors coupled
with intelligent processing is a fundamental part of such a system since it is this
cognition that allows such a system to detect and understand the behavioural
patterns of the human actors within the observed scene. Coupled with this is
the requirement that the end user can communicate with the system to facilitate
complex activities in the environment; this communication can be achieved either
through context aware mobile devices that can adapt to dynamically changing
environmental and physiological states or by external sensing and interpretation
of the end user actions.

The driving goal of this research is to improve the efficiency, security and
safety of airport based operations within the AmI paradigm. From a computer
vision point of view this means the requirement of distributed visual surveillance
and interpretation of a complex dynamic environment over extended time peri-
ods. In this paper we focus on the object tracking and data fusion modules from
such a visual surveillance system; more details of the complete system are given
in [5].

3 Scene Tracking

A motion detector segments an image into connected regions of foreground pixels,
which is then used to track objects of interest across multiple frames. The motion
detection algorithm selected for AVITRACK is the colour mean and variance
algorithm (a background subtraction method based on the work of [3]). The
evaluation process that led to this selection, is described in more detail in [6].
The colour mean and variance algorithm has a background model represented
by a pixel-wise Gaussian distribution N(µ, σ2) over the normalised RGB space,
together with a shadow/highlight detection component based on the work of [7].

For per camera scene tracking, the feature-based KLT algorithm is incor-
porated into a higher-level tracking process to group features into meaningful
objects; the individual features are subsequently used to associate objects to ob-
servations and to perform motion analysis when tracking objects during complex
interactions.

For each object O, a set of sparse features S is maintained, with the number
of features determined dynamically from the object’s size and a configurable
feature density parameter ρ. The KLT tracker takes as input the set of obser-
vations {Mj} identified by the motion detector, where Mj is a connected set of
foreground pixels, with the addition of a nearest neighbour spatial filter of clus-
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tering radius rc, i.e., connected components with gaps ≤ rc. Given such a set of
observations

{
M t
j

}
at time t, and the set of tracked objects

{
Ot−1
i

}
at t−1, ob-

ject predictions {P ti } are generated from the tracked objects. A prediction P ti is
then associated with one or more observations, through a matching process that
uses the individual tracking results of the features S of that object prediction
and their spatial and/or motion information, in a rule-based approach.

The spatial rule-based reasoning method is based on the idea that if a feature
belongs to object Oi at time t − 1, then it should remain spatially within the
foreground region of Oi at time t. A match function f is defined which returns the
number of tracked features of prediction P ti that reside in the foreground region of
observation M t

j . The use of motion information in the matching process, is based
on the idea that features belonging to an object should follow approximately
the same motion (assuming rigid object motion). Affine motion models (solving
for wTt Fwt−N = 0 [8]) are fitted to each group of k neighbouring features of Pi.
These motion models are then represented as points in a motion parameter space
and clustering is performed in this space to find the most significant motion(s) of
the object. These motions are subsequently filtered temporally and matched per
frame to allow tracking through merging/occlusion and identify splitting events.

On the apron, activity tends to happen in congested areas with several vehi-
cles stationary in the proximity of the aircraft. To differentiate between station-
ary and moving objects, the motion detection process was extended to include
a multi background layer technique. The tracker identifies stopped objects by
performing region analysis of connected ‘motion’ pixels over a time window and
by checking the individual motion of features of an object. Stationary objects are
integrated into the motion detector’s background model as different background
layers. The advantage this method has over pixel level analysis (e.g. Collins et
al [9]), is that for extended time periods (e.g. 30 minutes) pixel level methods
tend to result in fragmented layers that do not represent cohesive objects.

To improve reasoning in the data fusion module we introduce a confidence
measure that the 2-D measurement represents the whole object. The localisation
is generally inaccurate when clipping occurs at the left, bottom or right-hand im-
age borders when objects enter/exit the scene. The confidence measure ψ is esti-
mated in an n pixel border of the scene as ψe = max(|loce(Oi)− loce(It)| /n, 1.0)
where e ∈ {(left, x), (bottom, y), (right, x)} determines for which edge of the im-
age / object the confidence is measured, Oi is the object and It is the current
image frame. ψ is in the range 0.0 − 1.0, a single confidence estimate ψOi is
computed as a product over the processed bounding box edges for each object.

In the AVITRACK project both top-down and bottom-up approaches have
been applied to the problem of object categorisation. The challenges faced in
apron monitoring are the quantity (28 categories) and similarity of objects to be
classified e.g. the majority of vehicles have similar appearance and size; therefore
the simple descriptors used in many visual surveillance algorithms are likely to
fail. The top-down approach [10, 2] applies a proven method to fit textured 3D
models to the detected objects in the scene; the performance of this module is
excellent for many of the vehicle categories with few false matches; the disadvan-
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tage of this method is the computational cost which is currently prohibitive. The
bottom-up alternative to this approach is similar to the eigenwindow approach
of Ohba and Ikeuchi [11]; this method has the advantage that objects can be
classified even when partly occluded. The accuracy of the bottom-up method is
currently 70% for limited classes of object. A more detailed description of the
scene tracking process can be found in [12].

4 Data Fusion

The method applied for data fusion is based on a discrete nearest neighbour
Kalman filter approach [1] with a constant velocity model; the main challenge
in apron monitoring relates to the matching of tracks to observations; this is
not solved by a probabilistic filter, therefore the simpler deterministic filter is
sufficient. The (synchronised) cameras are spatially registered using coplanar cal-
ibration to define common ‘world’ co-ordinates. To localise objects in the world
co-ordinates we devised a simple heuristic strategy that estimates the ground
plane centroid using the camera angle to the ground plane, object category and
the measured object size.

The data association step associates existing track predictions with the per
camera measurements. In the nearest neighbour filter, the nearest match within
a validation gate is determined to be the sole observation for a given camera.
For multiple tracks viewed from multiple sensors, the nearest neighbour filter is:

1. For each track, obtain the validated set of measurements per camera.
2. For each track, associate the nearest neighbour per camera.
3. Fuse associated measurements into a single measurement.
4. Kalman filter update of each track state with the fused measurement.
5. Inter-sensor association of remaining measurements to form candidate tracks.

The validated set of measurements are extracted using a validation gate [1];
this is applied to limit the potential matches between existing tracks and ob-
servations. In tracking work the gate generally represents the uncertainty in the
spatial location of the object; in apron analysis this strategy often fails when
large and small objects are interacting – the uncertainty of the measurement is
greater for larger objects, hence using spatial proximity alone, larger objects can
often be mis-associated with the small tracks. To circumvent this problem we
have extended the validation gate to incorporate velocity and category informa-
tion, allowing greater discrimination when associating tracks and observations.

The observed measurement is a 7-D vector Z = [x, y, ẋ, ẏ, P (p), P (v), P (a)]
T

where P (·) is the probability estimate that the object is one of three main tax-
onomic categories (p = Person, v = Vehicle, a = Aircraft). This extended gate
allows objects to be validated based on spatial location, motion and category,
which improves the accuracy in congested apron regions. The effective volume
of the gate is determined by a threshold τ on the normalised innovation squared
distance between the predicted track states and the observed measurements:
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d2
k(i, j) =

[
HX̂−k (i)− Zk(j)

]T
S−1
k

[
HX̂−k (i)− Zk(j)

]
(1)

where Sk = HP̂−k (i)HT + Rk(j) is the innovation covariance between the track
and the measurement; this takes the form:

Sk =




σ2
x σxy 0 0 0 0 0
σyx σ

2
y 0 0 0 0 0

0 0 σ2
ẋ σẋẏ 0 0 0

0 0 σẏẋ σ
2
ẏ 0 0 0

0 0 0 0 σ2
P (p) 0 0

0 0 0 0 0 σ2
P (v) 0

0 0 0 0 0 0 σ2
P (a)




(2)

For the kinematic terms the predicted state uncertainty P̂−k is taken from the
Kalman filter and constant a priori estimates are used for the probability terms.
Similarly, the measurement noise covariance R is estimated for the kinematic
terms by propagating a nominal image plane uncertainty into the world co-
ordinate system using the method presented in [13]. Measurement noise for the
probability terms is determined a priori. An appropriate gate threshold can be
determined from tables of the chi-square distribution [1].

Matched observations are combined to find the fused estimate of the object;
this is achieved using covariance intersection. This method estimates the fused
uncertainty Rfused for N matched observations as a weighted summation:

Rfused =
(
w1R−1

1 + . . .+ wNR−1
numcams

)−1
(3)

where wi = w′i/
∑N
j=1 w

′
j and w′i = 1/ψci . ψ

c
i is the confidence of the i’th associ-

ated observation (made by camera c) estimated using the method in Section 3.
If tracks are not associated using the extended validation gate, the require-

ments are relaxed such that objects with inaccurate velocity or category mea-
surements can still be associated. Remaining unassociated measurements are
fused into new tracks, using a validation gate between observations to constrain
the association and fusion steps. Ghosts tracks without supporting observations
are terminated after a predetermined period of time. To track objects that can-
not be located on the ground plane, we have extended the tracker to perform
epipolar data association (based on the method presented in [13]).

5 Experimental Results

The Motion Detection module is evaluated in previous work [6]. The Scene Track-
ing evaluation assesses the performance on representative test data containing
challenging conditions for an objective evaluation. Two test sequences were cho-
sen, Dataset 1 (2400 frames) contains the presence of fog whereas Dataset 2
(1200 frames) was acquired on a sunny day; both sequences contain typical
apron scenes with congested areas containing multiple interacting objects.
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The tracker detection rate (TP/(TP+FN)) and false alarm rate (FP/(TP+
FP )) metrics defined by Black et al. [14] were used to characterise the overall
tracking performance (where TP, FN and FP are the number of true positives,
false negatives and false positives respectively). For Dataset 1 3435 true posi-
tives, 275 false positives and 536 false negatives were detected by the KLT based
tracker. This leads to a tracker detection rate of 0.87 and a false alarm rate of
0.07. For Dataset 2 3021 true positives, 588 false positives and 108 false nega-
tives were detected by the KLT based tracker. This leads to a tracker detection
rate of 0.97 and a false alarm rate of 0.16. Representative results of the scene
tracking module are presented in Figure 1. It can be seen that strong shadows
are tracked as part of the mobile objects such as the tanker from Dataset 1 and
the transporter from Dataset 2. In Dataset 1 a person (bottom-right of scene)
leaves the ground power unit and in Dataset 2 a container is unloaded from the
aircraft; these scenarios leave a ghost track in the previous object position.

The Data Fusion module is qualitatively evaluated for an extended sequence
of Dataset 1 (9100 frames). The data fusion performance is shown in Figure 1
where estimated objects on the ground plane are shown; it can be seen that many
of the estimated objects are contiguous. The results are encouraging, for many
scenarios the extension of the validation gate provides much greater stability,
especially when objects are interacting in close proximity. Track identity can be
lost when the object motion is not well modelled by the Kalman filter or when
tracks are associated with spurious scene tracking measurements.

Fig. 1. (Left) Results obtained from the scene tracking module showing (Top) Dataset
1 and (Bottom) Dataset 2. (Right) Result obtained from the data fusion module.
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6 Discussion and Future Work

The results are encouraging for both the Scene Tracking and Data Fusion mod-
ules; however, tracking is sensitive to significant dynamic and static object oc-
clusions. Care must be taken to handle errors propagated from earlier modules,
which can influence later processing stages (e.g. ghosts). Future work will look
into using perspective projection motion models in the Scene Tracking module,
speeding up the model based categorisation and using robust descriptors for the
bottom-up method. In the Data Fusion module a particle filter based approach
will be evaluated to improve performance in the presence of noise.
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