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Abstract

Recent interest has been shown in performance evaluation
of visual surveillance systems. The main purpose of perfor-
mance evaluation on computer vision systems is the statisti-
cal testing and tuning in order to improve algorithm’s reli-
ability and robustness. In this paper we investigate the use
of empirical discrepancy metrics for quantitative analysis
of motion segmentation algorithms. We are concerned with
the case of visual surveillance on an airport’s apron, that
is the area where aircrafts are parked and serviced by spe-
cialized ground support vehicles. Robust detection of indi-
viduals and vehicles is of major concern for the purpose of
tracking objects and understanding the scene. In this paper,
different discrepancy metrics for motion segmentation eval-
uation are illustrated and used to assess the performance of
three motion segmentors on video sequences of an airport’s
apron.

1 Introduction

Over the last decade, increasing interest in the field of visual
surveillance has led to the design of a plethora of systems
for automated visual tracking of moving objects. In many
of these systems, the detection and segmentation of moving
objects represent the first step on which subsequent process-
ing stages heavily depend. Deteriorations of segmentation
quality can have a severe impact on the performance of a
surveillance system, and thus, the ability to effectively seg-
ment moving objects under a wide range of disturbing con-
ditions is a critical requirement.

Although considerable efforts have been spent on the de-
velopment of robust motion segmentation algorithms, no
comparable attention has been given to their evaluation. As
a consequence, there is rising demand for quantitative eval-
uation of segmentation quality in order to assess the relia-
bility of existing approaches and to facilitate their compa-
rability [7]. Especially in the case of outdoor surveillance,
where illumination changes, weather conditions, shadows,
and occlusions strongly impact the segmentation quality.

Empirical methods developed for the assessment of mo-
tion segmentation quality can be characterised by their ba-
sis of evaluation: (1)goodness methodsthat operate without
reference segmentations (ground truth), and (2)discrepancy
methodsbased on the use of ground truth.

Recently, a set of performance metrics for motion seg-
mentation evaluation have been proposed in the case of non
available ground truth. In [5] Correia and Pereira present a
methodology based on the idea of measuring intra-object
homogeneity features and inter-object disparity features.
Erdem et al. [9] propose two error metrics based on colour
information and motion features.

Ellis [7] proposes error metrics based on correct and
false matches between ground truth and observations. Er-
dem et al. [8] suggest the use of spatio-temporal segmenta-
tion measures for object-based motion segmentation. Both
an evaluation methodology and metrics for video segmen-
tation quality analysis separating individual object evalua-
tion from overall evaluation have been introduced by Cor-
reia and Pereira [4]. Perceptually-weighted criteria, which
take into account visually desirable properties of reference
segmentations, have been designed by Villegas and Mari-
achal [15] and Cavallaro et al. [3].

To facilitate and accelerate the creation of ground
truth, semi-automatic frameworks such as ViPER [6] and
ODViS [11] have been designed. In [13] Schlögl et al.
present a fully-automatic evaluation framework, which in-
troduces ground truth by the use of synthetic objects.

In this paper, we investigate the use of discrepancy met-
rics for the quantitative analysis of spatial accuracy of seg-
mentations provided by motion segmentors. Specifically,
we are concerned with the case of visual surveillance on
an airport’s apron addressed by the European AVITRACK
project [1]; that is, the robust detection of individuals and
vehicles for the purpose of tracking and categorising objects
in the scene. We evaluate three motion segmentation algo-
rithms on airport’s apron sequences across a range of con-
ditions. The conditions studied are: Varying weather and
illumination conditions, different camera viewpoints, and
different scene complexity. The motion segmentors used in



the evaluation were: Mixture of Gaussians [14], Colour and
Edge fusion [10], and Colour Mean and Variance [16].

The remainder of this paper is organised as follows: Sec-
tion 2 gives a short introduction into the European AVIT-
RACK project. A methodology for object-based segmenta-
tion evaluation is presented in Section 3. Discrepancy met-
rics for the evaluation of segmentation quality are described
in Section 4. Section 5 presents experimental results and
discusses them. Finally, in Section 6 we draw the conclu-
sions.

2 The AVITRACK Project

The European AVITRACK [1] project addresses the spe-
cific case of automatically supervising commercial aircraft
servicing operations at a designated airport. It is intended
to add an additional technological layer to a specific airport
in order to improve efficiency and security of the handling
services. Visual surveillance in the AVITRACK project in-
cludes tracking and categorisation of vehicles and individ-
uals. The apron on which the prototype is installed is ob-
served by eight cameras in order to see a maximum of oper-
ations around the aircraft. Figure 1 illustrates the complex-
ity of the specific application scenario showing an apron
with tracked vehicles and individuals.

Figure 1:Airport’s apron: tracking of vehicles and individuals

Object categorisation is necessary in order to perform
a high level interpretation of the tracking results and to
recognise the activities on the airport’s apron. Such cate-
gorisation strongly depends on the motion segmentor’s out-
put. Hence, one aim of the project is to apply and anal-
yse robust statistical techniques for motion segmentation.
16 motion segmentation algorithms were implemented and
evaluated [2]. The performance criteria for the evaluation
were ’Susceptibility to Noise’, ’Robustness to Illumination
Changes’, ’Detection Sensitivity’ and ’Speed’. Of these,

the following three algorithms have shown acceptable sus-
ceptibility to noise and good detection sensitivity: Mixture
of Gaussians [14], Colour and Edge fusion [10] and Colour
Mean and Variance [16]. A quantitative evaluation of the
selected algorithms will illustrate which motion segmen-
tor provides the best segmentation quality results therefore
helping to come to a decision about the approach to be cho-
sen for our application.

3 Performance Evaluation of Motion
Segmentors

One of the most popular approaches to performance eval-
uation of motion segmentors is to address it as a sim-
ple two-class (foreground/background) segmentation eval-
uation problem [7, 6]. That is, in the case of several fore-
ground objects, these are aggregated into a compound fore-
ground region, which is compared to the compound fore-
ground estimated by the motion segmentor. While such an
approach can provide a meaningful quantification of overall
frame-wise segmentation quality, it fails to deliver insight
into the segmentation algorithms behaviour regarding indi-
vidual objects. Unfortunately, this shortcoming limits it’s
usefulness in the area of visual surveillance, where the sta-
ble segmentation of individual objects is usually favoured
over a good frame-wise segmentation.

In [4, 8] methodologies for object-based quality evalu-
ation have been proposed. These approaches combine the
results of individual object evaluation into an overall mea-
sure, assuming that a unique correspondence between esti-
mated and reference objects exists. In the context of video
tracking, however, such one-to-one mappings are seldom
available. Single objects may be missed or split into discon-
nected regions, and estimated segmentations often overlap
with more than one reference object [15].

In the next section, we propose a methodology for seg-
mentation evaluation, facilitating the assessment of individ-
ual objects segmentation quality while taking into account
the segmentation problems mentioned above.

Evaluation Methodology

We loosely follow the methodology for object-based seg-
mentation quality evaluation introduced by Correia and
Pereira [4]. The methodology for quantitative analysis of
motion segmentors is described in the following:

1. Establishing of correspondence:

(a) All regions overlapping the reference object are
assigned to the object. (Multiple assignments
of estimated regions to reference objects are al-
lowed.)



(b) Splitting of multiply assigned regions: When es-
timated regions overlap more than one reference
object, regions are split by assigning individual
pixels to the closest object.

(c) If objects are missed in the segmentation, the
missing regions are processed with all reference
pixels as false negatives.

(d) Estimated foreground regions not associated with
any reference objects are mapped onto the refer-
ence background; thus treated as false positives
with respect to the background mask.

2. Individual object segmentation evaluation:
Empirical discrepancy metrics are used to compute the
segmentation quality for each reference object.

3. Overall segmentation quality evaluation:
Results from individual object evaluation are weighted
by their relevance and combined into an overall quality
metric.

4 Evaluation Metrics for Motion Seg-
mentation

The quality of motion segmentation can in principle be de-
scribed by two characteristics. Namely, the spatial devia-
tion from the reference segmentation, and the fluctuation
of spatial deviation over time. In this work, however, we
concentrate on the evaluation of spatial segmentation char-
acteristics. That is, we will investigate the capability of the
error metrics listed below, to describe the spatial accuracy
of motion segmentations.

• False negative rate (fnr) and false positive rate (fpr)
These normalised metrics are based on pixel-wise mis-
matches between ground truth and observations in a
frame [7].

fnr =
Nfn

Ntp + Nfn
(1)

fpr =
Nfp

Nfp + Ntn
(2)

whereNfn andNfp denote the number of false nega-
tive and false positive pixels respectively.Ntn andNtp

are the number of true negatives and true positives.

• Misclassification penalty (MP)
The obtained segmentation is compared to the refer-
ence mask on an object-by-object basis; misclassified
pixels are penalized by their distances from the refer-
ence objects border [8].

MP = MPfn + MPfp (3)

with

MPfn =

∑Nfn

j=1 dj
fn

D
(4)

MPfp =

∑Nfp

k=1 dk
fp

D
(5)

Here,dj
fn anddk

fp stand for the distances of thejth

false negative andkth false positive pixel from the con-
tour of the reference segmentation. The normalised
factor D is the sum of all pixel-to-contour distances
in a frame.

• Rate of misclassifications (RM)
The average normalised distance of detection errors
from the contour of a reference object is calculated us-
ing [13]:

RM = RMfn + RMfp (6)

with

RMfn =
1

Nfn

Nfn∑
j=1

dj
fn

Ddiag
(7)

RMfp =
1

Nfp

Nfp∑
k=1

dk
fp

Ddiag
(8)

Nfn andNfp denote the number of false negative and
false positive pixels respectively.Ddiag is the diagonal
distance within the frame.

• Weighted quality measure (QMS)
This measure quantifies the spatial discrepancy be-
tween estimated and reference segmentation as the
sum of weighted effects of false positive and false neg-
ative pixels [15].

QMS = QMSfn + QMSfp (9)

with

QMSfn =
1
N

Nfn∑
j=1

wfn(dj
fn)dj

fn (10)

QMSfp =
1
N

Nfp∑
k=1

wfp(dk
fp)d

k
fp (11)

N is the area of the reference object in pixels. Follow-
ing the argument that the visual importance of false
positives and false negatives is not the same, and thus
they should be treated differently, the weighting func-
tionswfp andwfn were introduced:

wfp(dfp) = B1 +
B2

dfp + B3
(12)

wfn(dfn) = C · dfn (13)



In our work, we used the parametersB1 = 19, B2 =
−178.125, B3 = 9.375, andC = 2, resulting in the
weighting functions depicted in Figure 2. One can see,
that missing (false negative) pixels gain more impor-
tance with increasing distance than added foreground
pixels. Thus, our weighting favours algorithms which
provide larger foreground estimates, over more conser-
vative ones. Naturally, the choice of weighting func-
tions depends on the targeted application; see [12, 3]
for examples.
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Figure 2:Weighting functions for false positives and false nega-
tives.

5 Experiments

We evaluated three different motion segmentation algo-
rithms on airport’s apron datasets using the methodology
and the error metrics introduced in Section 3 and 4 re-
spectively. These algorithms were Colour and Edge fusion
(CEF), Mixture of Gaussians (MoG), and Colour Mean and
Variance (CMV).

5.1 Data sets

In outdoor surveillance applications such as AVITRACK
a wide range of disturbing conditions are influencing the
scenery. Varying Illumination, different weather condi-
tions, and scene complexity are issues to be considered
during the performance evaluation of motion segmentation
algorithms. According to these points, we have chosen the
following representative apron sequences:

S3 - Camera 2: Shows an aircraft parking on the
apron. Moreover, it contains individuals and vehicles such
as conveyor belts, transporters with dollies and a stair
vehicle working on maintenance tasks.

S4 - Camera 5: A tanker and a service vehicle move
across the apron. A ground power unit (GPU) parks in the
maintenance area and a person leaves the GPU.

Figure 3: Sample image (frame 5814) from the S21-Camera
7 sequence (foggy conditions).

Figure 4: The manually created ground truth and CEF,
MoG, and CMV detection results for frame 5814 taken from
sequence S21-Camera 7 (clockwise from top-left).

S5 - Camera 5: Three individuals walk around the apron
while a transporter and a GPU park in the maintenance
area. The sequence contains reflections either caused by
liquid on the ground or by the paint on the ground.

S8 - Camera 6: A GPU enters in the scene and two
individuals walk on the apron. The sequence presents in
close-up a transporter with dollies in movement. As a night
sequence, the vehicle lamps produce large reflections on
the ground.

S21 - Camera 7: The sequence contains individuals
walking on the apron. Vehicles in movement such as a
GPU, a tanker, a catering vehicle and service vehicles are
shown.

S26 - Camera 6: A group of individuals walking and a
conveyor belt in movement are shown. An aircraft starts its
departure.

Sequences S3-Camera 2, S4-Camera 5, and S5-Camera
5 were acquired under bright daylight. S21-Camera 7 and
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Figure 5: False positive (left) and false negative (right) error rates versus number of frames for the S21-Camera 7 sequence.

S26-Camera 6 were taken under foggy conditions. S8-
Camera 6 is a night sequence. All sequences were stored
at a size of 720x576 pixels, and at a frame rate of 12.5 fps.
20 reference frames were extracted from each of the six se-
quences. Additionally,25 frames from S3-Camera 2 and
10 frames from S21-Camera 7 were selected, resulting in a
total of 155 reference images. For these, ground truth seg-
mentation masks have been created manually.

5.2 Results

To illustrate the application of object-based discrepancy
metrics, we conducted an experiment using20 frames from
the particularly challenging sequence S21-Camera 7. This
sequence was acquired under foggy conditions and features
five objects (aircraft, auto, transporter, GPU and a pedes-
trian) moving at different distances from the camera (see
Figure 3) . Results of the segmentation process are shown
in Figure 4. Objects such as the aircraft are only partially
detected due to the achromaticity of the scene. Shadows
are segmented as part of the mobile objects, and holes and
fragmentations appear where objects have the same colour
as the background.

At first, fpr and fnr were calculated for whole frames.
The results of this evaluation are depicted in Figure 5. The
algorithms achieve relatively low false positive rates (1.9%
- 3.1%) at the cost of high false negative rates between24%
and 44%, caused by the achromatric nature of the scene.
Note, that the CEF algorithm generates a ghost (close to the
pedestrian), resulting in an increased false positive rate.

In addition, the weighted quality measureQMS, the mis-
classification penaltyMP, and the rate of misclassifications
RM were computed separately for each object (see Fig-
ure 6). We obtained the overall object-based segmentation
quality as an average of the individual object’s segmentation
errors. At frame one, three moving objects are present in the
scene (aircraft, auto and transporter). A GPU and a pedes-
trian enter the scene at frame five and eight respectively.
These objects produce a lower individualQMSerror than
the aircraft, auto or transporter. (Figure 6 (d, e, f)). This

is also reflected in Figure 6 (a) which shows the decrease
in overallQMSafter frame five and eight. Notice, that the
MP metric is dominated by the segmentation error of the
transporter (Figure 6 (g, h, i )). This can be explained by
the fact that the transporter generates a larger segmentation
error due to it’s size, which, in contrast toQMS is not nor-
malized by the area of the reference object mask (for details
see Section 4). The rate of misclassificationsRM (Figure 6
(c)) provides unstable results for the selected data set.

To further analyse the usefulness of the object-based dis-
crepancy metrics, we conducted an experiment on10 im-
ages of the S21-Camera 7 sequence using the MoG algo-
rithm. For this purpose, we varied the factork for the
matching threshold of the Gaussians (pixel values outside
k standard deviations of a distribution are classified as fore-
ground) between 0.5 and 3.25 in steps of 0.25. In Figure 7
a sample image, showing three moving pedestrians is de-
picted. The corresponding ground truth image and the seg-
mentation results atk=1,k=2.25, andk=3.25 are depicted in
Figure 8. The misclassification penaltyMP , the weighted
quality measureQMS, and the rate of misclassifications
RM were computed for each pedestrian. The overall frame
segmentation errors were obtained by averaging over the in-
dividual objects (see Figure 9).

One can see that there is a high amount of perceptual
agreement between the segmentation results depicted in
Figure 8 and the objective values of the overall (per frame)
MP and QMS. Again, less stable results are obtained
using the rate of misclassificationsRM . This can be ex-
plained by it’s sensitivity with respect to certain types of
segmentation errors. TheRM computes the average dis-
tance of misclassified pixels from the reference object’s
contour. Therefore already a small number of erroneous
pixels can produce a relatively high error rate.

The performance results of the motion segmentation
algorithms for all155 test images are depicted in Table 1.
False positives and false negatives ofQMS, MP, andRM
error metrics were computed for each object and averaged
per frame. Furthermore,fpr and fnr (ER) were calculated
for whole frames. CMV produces the best false negative
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Figure 6: Average and individual object segmentation errors. (a, b, c) AverageQMS, MP andRM object-based segmentation
errors of the motion segmentors, (d, e, f)QMS individual object segmentation error of CEF, MoG and CMV, (g, h, i)MP
individual object segmentation error of CEF, MoG and CMV, (j, k, l)RM individual object segmentation error of CEF, MoG
and CMV.



S3-Camera 2 S4-Camera 5 S5-Camera 5 S8-Camera 6 S21-Camera 7 S26-Camera 6

FP FN FP FN FP FN FP FN FP FN FP FN

QMS-CEF 5.517 1.576 4.674 1.324 4.636 0.445 1.898 10.74 12.37 4.501 1.45 0.849

QMS-MoG 4.653 2.888 4.621 1.407 4.534 0.551 1.901 16.49 2.454 6.237 0.716 2.089

QMS-CMV 4.843 2.026 4.632 1.199 4.905 0.392 3.28 6.61 2.902 5.727 0.527 1.182

MP-CEF 6.3e-4 5.5e-5 4.44e-4 4.5e-5 4.4e-5 2.3e-6 1.1e-3 2.1e-3 3.7e-4 3.6e-4 4.5e-5 1.4e-5

MP-MoG 5.93e-4 9.7e-5 4.41e-4 4.8e-5 5.3e-5 2.9e-6 4.5e-4 3.7e-3 2.6e-4 3.7e-4 2.8e-5 3.3e-5

MP-CMV 5.95e-4 6.8e-5 4.43e-4 3.9e-5 5.9e-5 2.1e-6 2.1e-3 1.4e-3 3.1e-4 3.3e-4 1.6e-5 1.3e-5

RM-CEF 4.53e-3 1.06e-2 5.4e-3 1.13e-2 2.44e-3 8.1e-3 1.63e-2 0.013 8.8e-3 8.1e-3 3.7e-3 3.8e-3

RM-MoG 4.94e-3 1.11e-2 5.3e-3 1.15e-2 2.43e-3 8.2e-3 1.75e-2 0.011 8.5e-3 6.6e-3 3.6e-3 3.2e-3

RM-CMV 4.51e-3 1.09e-2 5.1e-3 1e-2 2.16e-3 8e-3 1.62e-2 0.017 8.2e-3 0.011 1.8e-3 2.7e-3

ER-CEF 1.72e-2 0.171 1.98e-2 0.131 7.2e-3 0.076 0.031 0.375 0.032 0.232 0.01 0.09

ER-MoG 1.57e-2 0.276 1.91e-2 0.139 5.7e-3 0.092 0.03 0.564 0.018 0.375 5.2e-3 0.228

ER-CMV 1.58e-2 0.213 1.93e-2 0.121 6.5e-3 0.075 0.046 0.243 0.021 0.325 2.5e-3 0.184

Table 1:Performance results of the motion segmentation algorithms on the apron data sets.

Figure 7: Sample image (frame 1659) from the S21-Camera
7 sequence.

(a) Ground truth (b)k=1

(c) k=2.25 (d)k=3.25

Figure 8: The ground truth and the MoG segmentation re-
sults for different matching threshold factorsk.

error results (for all metrics) on sequences S4-Camera 5,
S5-Camera 5, S8-Camera 6 (not forRM) and S26-Camera
6 (not for fnr). All segmentors provide similar results
w. r. t. effects caused by strong illumination (such as cast
shadows) (see S3-Camera 2 and S4-Camera 5 results). A
high amount of false negatives is produced by the motion
segmentors on the night sequence S8-Camera 6.CMV
and MoG produce the best false positive error results on
the sequences with the presence of fog (see S21-Camera 7
and S26-Camera 6 results). TheCMV exhibited the most
promising results for the selected data sets. Therefore, for
our application scenario we choose theCMV as reference
motion segmentation algorithm.

6 Conclusions

In this paper we proposed an object-based methodology and
four discrepancy metrics for motion segmentation evalua-
tion. The metrics usability was tested on video data ac-
quired at an airports apron using three selected motion seg-
mentation algorithms. Representative scenes according to
variability in illumination condition, weather conditions,
and complexity of scene activity were selected. Two of the
tested metrics, namely the misclassification penaltyMP and
the weighted quality measureQMS, have shown their use-
fulness in providing meaningful quantifications of segmen-
tation quality. An advantage of these metrics is that they
can be applied on an object-by-object basis. Due toRM‘s
sensitivity to segmentation errors it is a less robust error
metric thenMP andQMS. fnr andfpr provide a valuable in-
sight into a segmentation algorithms behaviour regarding an
overall scene. Our future research direction is to determine
how factors like the defragmentation of estimated objects,
as well as the overlap with more than one reference object,
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Figure 9: Discrepancy measuresMP (a), QMS (b), andRM (c) versus matching threshold factorsk for the pedestrian
sequence S21-Camera 7.

can be incorporated directly into the performance metrics.
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