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ABSTRACT

We propose a multi-layer RNN for sign language detection. The sys-
tem uses features extracted automatically from a 2-stream convolu-
tional neural network (CNN) that takes video image data and motion
data as input. We also created a dataset of videos containing sign-
ing “in the wild” to be used for training and evaluation purposes.
We compare our system against the state-of-the-art, and attain an
improvement of around 18%, indicating that our network is able to
leverage dynamic information of hand motion during detection.

Index Terms— sign language detection, RNN, CNN

1. INTRODUCTION

Sign languages are the main, and oftentimes the only, method of
communication used by deaf communities around the world. These
visual languages exhibit rich linguistic structure, and primarily con-
vey semantic meaning via the location, shape, and dynamic motion
of the hands.

Automatic sign language recognition (ASLR) provides quite a
number of challenges to the fields of computer vision and image
processing. And although great strides have been made in recent
years, sign language technologies in general still lag far behind
speech technologies. For example, ASLR is typically attempted
within well-defined settings and under pre-determined constraints,
like having a single signer with known orientation and position.
Further progress is needed until sign language technologies become
robust enough to be able to assist the Deaf community in overcom-
ing communication barriers that exist both in the physical world and
in the digital world.

One such area that merits further attention is sign language de-
tection, the process of identifying whether a video (or video seg-
ment) from a generic and unconstrained video collection contains
signing or not. Potential applications include automatic tagging and
categorisation of videos, as a first step towards auto-captioning of
sign videos, as well as for the automatic initialisation of ASLR rather
than relying on pre-determined assumptions about the input videos.

2. RELATED WORK

Much of the current work on sign language detection utilise face de-
tection algorithms to identify region of interest (ROI) in an image,
where the system could look for telltale patterns of hand motions
associated with signing. For example, Monteiro et al. [1] perform
background subtraction in the ROIs, and then compute simple vi-
sual features that describe the foreground pixels and their evolution
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Fig. 1. Sample video frames from our “signing in the wild” dataset.
The two classes shown in (b) & (c) were chosen because of their
potential for confusion with (a) signing videos.

in time. Shipman et al. [2, 3] also apply background subtraction,
but then extract polar motion profiles from the ROIs. These describe
foreground pixels in terms of their distributions of distances and po-
lar orientations from the centre of the face. A limitation of these
methods is that the detection of signing activity depends on the suc-
cess rate of face detection. Gebre et al. [4] try to mitigate this by
using skin detection in addition to face detection, while an ensemble
of face detectors is used in [3]. As regards to the classifier, support
vector machines (SVMs) are the most popular [1, 5, 2], followed by
random forests [4], and k-nearest neighbour (kNN) [6]. In contrast
to the field of generic video action recognition, where deep learning
techniques are widely used, in the area of sign language detection,
limited use has been made, probably due to the lack of large datasets
needed for training such systems. Gebre at al. [7] use a sparse au-
toencoder and a 3D CNN for the identification of a number of sign
languages. 3D CNNs perform convolution operations across 3 di-
mensions, by operating on a batch of video frames at one go. One
limitation is the increase in complexity (parameters) due to the extra
kernel dimension, and hence harder to train.

In the rest of this paper we describe our contributions: (1) we
propose an RNN based system to improve on the state-of-the-art, (2)
we make use of a CNN to automatically extract strong features from
image frames, in order to push the boundary on the type of videos
that can be used in sign language detection, and (3) we introduce
our dataset, “Signing in the Wild”, which we make public, to aid the
training and evaluation of such systems.

3. DATASET

Publicly-available datasets for generic video action recognition, like
AVA [8] and THUMOS [9], do not contain signing as one of their
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Fig. 2. Our proposed sign language detection framework using features extracted via CNNs from raw video and motion data in parallel. We
also employ an RNN to leverage temporal information within video segments, followed by a non-linear classifier.

activity classes. And research works focusing specifically on sign
language detection [1, 5, 2, 10], have used datasets that, to the best
of our knowledge, have not been made public. We checked ASLR
datasets, such as SIGNUM [11] and RWTH-Phoenix [12]. While
such datasets could be used for sign language detection, most are
acquired under constrained conditions, to ensure an optimal view of
the signer. Such datasets do not meet our requirements for signing
“in the wild”, and we thus opted to create our own dataset.

The videos in our dataset are harvested from YouTube. We
used a number of keywords to search for as wide a variety of sign
videos as possible, resulting in a rich collection of videos of different
sign languages, single and multiple signers, natural signing, complex
camera and signer motion, etc.

For the negative set, we created two classes of videos, labelled
‘speaking’ and ‘other’. Our motivation for the ‘speaking’ class is
that speech is often accompanied by hand gestures (gesticulation),
which can be easily confused with signing. Signing can be discrim-
inated by its linguistic nature, i.e., its distinct phonological, mor-
phological and categorical (discrete) structures, while gesticulation
tends to be more spontaneous, idiosyncratic and analogue in na-
ture. But recent research [13, 14] is showing that the distinction be-
tween the two might be more blurred: signers gesture just as speak-
ers do, and the gesticulation by signers is imprinted upon the more
structured signing. Another similarity is that signers make use of
mouthings (mouth shapes and movements), which can exhibit visual
similarities to the mouth movements in speech.

For the ‘other’ class, we looked for distractors to both ‘sign-
ing’ and ‘speaking’, i.e., videos containing hand movements that are
quite similar to signing/gesticulation and thus might confuse a clas-
sifier. Examples include: miming, hand exercises, various manual
activities like playing instruments, painting, writing, yoga and mar-
tial arts, sports like table tennis, etc. Also included are activities
similar to speech, like people laughing, clapping, nodding, listening
to other speakers, etc. Figure 1 shows examples from our dataset.

A total of 1120 videos are included in our dataset, each video
contributing the first 6.6 minutes, resulting in 2000 frames per video
when sampled at SHz. We have 1.45 million video frames in total.

Our videos are untrimmed, i.e., a video can contain multiple ac-
tivities, background scenes, scene cuts, and other actions done by the
same or different actors. Thus the videos are unconstrained both spa-
tially and also temporally. This is in line with recent trends in video
action recognition [8], and unlike ASLR datasets where trimmed
videos are the norm. In particular, several videos in our dataset con-
tain all 3 classes (occasionally with temporal overlap), and some-
times the same person alternating between signing and speaking.

We performed manual groundtruthing at video frame level.

Since action boundaries can be inherently fuzzy, we consider a short
temporal context (10 frames) surrounding the frame to be labelled
in order to decide on its class label. We also adopt certain spatial
guidelines, e.g. mouth movements must be visible for action ‘speak-
ing’, thus eliminating distant views and when the speaker turns
his/her back to the camera. Ambiguous cases are left unlabelled.
We annotate video segments that do not contain signing or speaking
as ‘other’, including opening/closing credits, title screens, scene
transitions, animations, background scenes, etc.

One limitation of the groundtruthing of our dataset is that it has
been performed by a single person, thus prone to subjectivity. We
acknowledge this limitation and we hope to address this issue in a
future release of the dataset by incorporating multiple annotators. In
total, we annotated 1.23 million out of 1.45 million video frames. We
make our dataset publicly available at https://github.com/
mark-borg/Signing-in-the-Wild-dataset.

4. OUR APPROACH

In contrast to existing sign language detection methods [1, 2, 3, 5, 7,
15, 16, 17], which make use of hand-crafted features as input to their
classifier, we employ features extracted from a CNN. We use the
VGG-16 network [18] for feature extraction. We select this network
because it offers a good compromise on layer depth, and because it
has proven itself to be quite successful when applied to a variety of
domains and applications including video activity recognition [19].

Since a main discriminating characteristic of signing is its dy-
namic hand motions, we adopt a two-stream CNN approach [20].
Apart from extracting CNN features from the raw image data on a
per-frame basis, we augment this with a second CNN (working in
parallel) that extracts features from instantaneous motion data. Op-
tical flow is the typical choice when it comes to selecting the type of
motion data used in the second CNN stream [20, 21, 22, 23, 24]. In
our work we experiment with other types of motion data, like mo-
tion history image (MHI) and multi-frame differencing, so as to find
a good compromise between accuracy and computational efficiency.
The CNN features extracted from the image data and motion data
are then fed to a RNN, in order to leverage the temporal information
present in video segments. We choose a gated version as our RNN,
called gated recurrent unit (GRU) [25]. A GRU can use its inter-
nal state (memory) to persist information across a short time period,
allowing it to learn dynamic patterns in the CNN features.

We complete our system with a 2-layer fully-connected classi-
fier, plus layers for batch normalisation and dropout, to help reduce
over-fitting. The final class label is obtained via decision-based fu-
sion. Figure 2 illustrates our proposed framework; shaded layers are
the trainable ones. In the following sections, we will describe the



components of our system. Then we describe our experiments, fol-
lowed by an evaluation and comparison against the state-of-the-art.

4.1. CNN features

We use the VGG-16 implementation provided in Keras [26] (de-
noted as Configuration D in the original paper [18]), with pre-trained
weights on ImageNet. VGG-16 has 13 convolutional and 3 fully
connected layers, with 138 million trainable parameters, and it uses
filters with small receptive fields (3 x 3) in all the layers.

We experimented with extracting CNN features both from the
last convolution layer of VGG-16 (‘block5_conv3’), as well as from
the first fully-connected layer (‘fc1’). The former yields a feature
map of size 7x7x512 (=25088) after max pooling, while the latter
produces a more compact set of 4096 CNN features. No fine-tuning
of the CNN is done. Input frame resolution is set to 224224 pixels.

4.2. Two-stream CNN

In two-stream CNN approaches, RGB data and motion data (typi-
cally optical flow), are each processed in parallel by a CNN with
identical architecture [20]. In our case we use the VGG-16 network
for both streams. We use Farnebick’s algorithm [27] for computing
dense optical flow. Apart from optical flow, we also investigate other
types of motion data, mainly MHI [28], and multi-frame differenc-
ing, since the last two are more computationally efficient. We use
a S5-frame temporal window for MHI and multi-frame differencing,
with the frames sampled at the original video frame rate.

Since motion data exhibits strong differences in its distribution
from RGB data, one would naturally expect that a CNN model like
VGG-16 needs to be trained from scratch for motion data. Conspir-
ing against this is the limited training data available, compared to the
original ImageNet dataset. As aresult we decided to use a pretrained
VGG-16 for the motion data stream. Backing our decision are the
findings of Yosinski et al. [29], demonstrating that applying transfer
learning even from a distant task (unrelated data) is still better than
training from scratch. We adopt an approach similar to Wang et al’s
cross modality pre-training method [30] for preparing optical flow
data to be fed into the VGG-16 network. The optical flow field is rep-
resented as a 3-channel RGB image with the angle of the flow vec-
tor determining the chrominance value and the flow vector magni-
tude defining the luminance. Ten consecutive optical flow fields are
stacked together, creating an input of size 224 x 224 x 30. The filter
weights of the first convolution layer of VGG-16 (‘block1_conv1’)
are then replicated to handle the extra channels in the input data.

A similar approach is used for feeding a stack of 5 multi-
frame difference images to VGG-16, with the addition that the filter
weights are first averaged across the 3 channels before replication,
due to the difference images being single channel. Because of time
constraints at the time of paper submission, we did not attempt any
fine-tuning of the VGG-16 CNN, for any of the two streams.

4.3. RNN and GRU

RNNs are the networks of choice when it comes to handling se-
quences of data where the temporal dynamics connecting them is
highly important. But a traditional RNN suffers from a number of
problems during training, including that of vanishing gradients [31].
Gated versions of RNNs, such as long short-term memory (LSTM)
[32] and GRU [25], address and minimise such training problems.
We evaluate both LSTMs and GRUs for sign language detection,
and opt for GRU over LSTM, mainly due to its simpler structure
(2 gates per cell instead of 3), the need for less training data, and
that a GRU can achieve this without sacrificing accuracy. We also
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Fig. 3. A 2-layer RNN network, with 256 hidden units and 20
timesteps. x; are the input CNN features; y is the RNN output.

investigate the use of stacked RNNs with 2 or more layers, since
these are able to perform hierarchical processing on temporal data.
Figure 3 shows an unrolled version of our RNN network.

5. EXPERIMENTS & EVALUATION
5.1. Experiments

In our experiments we use the dataset described in §3, partitioning it
into 5 folds, 4 for training and 1 for validation, taking care that all
labelled frames of each video appear in the same fold only. We use
video segments of 20 frames throughout all of our experiments.

We train the RNN for 500 epochs, using early stopping based on
validation cross-entropy loss (if no improvement over 10 epochs).
Mini-batch stochastic gradient descent is used, with Adam as the op-
timisation algorithm [33]. We employ a training schedule inspired
by the findings and recommendations of [34, 35]. We start with
a fixed mini-batch size of 32 and a learning rate of 0.001, reduc-
ing the learning rate each time the validation loss stops improving
for that learning rate value. Once validation loss stops decreasing
no matter how much we reduce the learning rate, we increase the
batch size and use the learning rate value that performed best in
the previous step. This process is repeated till no further improve-
ment in loss is observed regardless of batch size increase. We make
our code available here: https://github.com/mark-borg/
sign-language-detection.

5.2. Evaluation

We start by comparing CNN features extracted from the ‘block5_
conv3’ layer against those taken from ‘fc1’. Results of Table 1 show
that features extracted from VGG-16 layer ‘fcl’ perform better, in
addition to being more efficient in size.

In another experiment we examine the accuracy and computa-
tional time of the different types of motion data given in §4.2, both in
conjunction with the video data (i.e., as a 2-stream CNN, one video
stream plus one motion stream), but we also evaluate each type of
motion stream on its own, in order to assess its individual contribu-
tion. Results are given in Table 2. Surprisingly, just using motion

Table 1. Results obtained when using different CNN features

CNN layer Feature size  Loss (validation set) |
VGG-16 block5_conv3 25088 0.6681
VGG-16 fcl 4096 0.5037
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Fig. 4. Qualitative results and confusion matrix for our classifier. In this video, two persons are signing (frames 1 to 4 above), followed by a
video transition effect (horizontal shrink, last 2 frames). Note that the fifth frame is classified incorrectly: ‘speaking’ instead of ‘signing’.

Table 2. Motion stream & fusion results for 2-stream CNN

Modality Loss| Accuracy T Time (ms) |
RGB stream only 0.5128 85.01% -
optical flow only 0.5387 83.12% 57.8
MHI only 0.5445 83.67% 17.1
multi-frame diff. only 0.5738 84.08% 9.7
RGB stream + optical flow stream - 87.67% -
RGB stream + MHI stream - 87.60% -
RGB stream + frame diff. stream - 85.61% -

Table 3. Results of various RNN architectures

RNN layers trainable parameters  Loss (valid. set) |
LSTM 1 4,474,627 0.5144
LSTM 2 4,999,939 0.6413
LSTM 3 5,525,251 0.5714
GRU 1 3,360,259 0.5267
GRU 2 3,754,243 0.5037
GRU 3 4,148,227 0.6028

data alone can still yield a high detection rate. Also noteworthy is
that MHI performs nearly as well as optical flow, while being more
computationally efficient. Finally, Table 3 gives the results obtained
when evaluating different types and stacked-layer depths of RNNs.
In these experiments we fix the number of hidden units in the RNNs
to 256 for all layers, and the number of timesteps is 20, the video
segment length. We can observe that a 2-layer stacked GRU per-
forms the best, with the added advantage that the model has less
parameters; this is the model of Figure 3.

5.2.1. Ablation studies

Once we determined the best architecture from several model de-
signs, we performed ablation studies on the model: do all the layers
contribute to the final outcome of the model? Can the model be sim-
plified further without decreasing accuracy? Due to time constraints,
for these ablation studies we only used 2 folds from the dataset —
one for training, another for validation. Table 4 lists the main results.
Dropout appears to be a critical element in our proposed model, both
as part of the fully-connected classifier as well as within the stacked
GRU layers. Table 4 shows loss for different dropout rates.

5.2.2. Comparison with the state-of-the-art

Next we compare our system against the work of Shipman et al.
[2, 3], currently the state-of-the-art in sign language detection. They
report an F1 score of 78% (precision of 83%) against a dataset of 227
YouTube videos (111 sign and 116 non-sign). Since their dataset is
not publicly available and in order to perform as fair a comparison as
possible, we implemented their system as a baseline against which
to evaluate our proposed solution, both running against our dataset.

Table 4. Ablation studies on the proposed RNN network

Model settings \ Cross-entropy loss on validation set |

proposed model 0.504

no batch normalisation | 0.609 (~ 20% increase in loss)
no dropout layer 0.715 (= 42% increase in loss)
no GRU dropout 0.693 (= 38% increase in loss)
no classifier fcl layer 0.649 (= 29% increase in loss)

with dropout layer rate:| 0.1 0.2 0.3 04 0.5 0.6
loss:| 0.605 | 0.577 | 0.575 | 0.504 | 0.511 | 0.602

with GRU dropout rate:| 0.1 0.2 0.3 0.4 0.5 0.6
loss:| 0.628 | 0.601 | 0.548 | 0.649 | 0.554 | 0.552

Table 5. Comparison with the state of the art

Method Feature type & Classifier Loss | Precision T
baseline method [2, 3] hand-crafted features + SVM  1.114  69.23%
baseline+RNN hand-crafted features + RNN  0.841  78.02%
CNN+SVM 2-stream CNN features + SVM - 79.15%
our method 2-stream CNN features + RNN  0.573  87.67%

Table 5 gives the results. Our method outperforms the base-
line by ~ 18%. This result shows that by combining strong fea-
tures from a CNN together with the temporal abilities of an RNN,
a substantial improvement in recognition can be attained on quite a
difficult dataset. To assess the RNN’s contribution on its own, we
combine the hand-crafted features of the baseline method with our
RNN network — termed ‘baseline+RNN’ in Table 5. We also evalu-
ate the CNN features when combined with an SVM instead of RNN
(method ‘CNN+SVM’ in Table 5). We can see that, for this dataset,
an RNN improves recognition by 9% when compared to the SVM
of the baseline method, brought about by the RNN’s ability to lever-
age the dynamic information contained in signing. Finally Figure 4
shows some qualitative results and confusion matrix.

6. CONCLUSION

We present a sign language detection system comprised of CNN and
RNN components. A 2-stream CNN processes image data and mo-
tion data (optical flow, MHI, and multi-frame differencing) to ex-
tract strong features. These are then fed to an RNN network, made
up of stacked GRU layers, in order to leverage the dynamic infor-
mation contained in signing videos. To evaluate our proposed sys-
tem, we construct a dataset we call “Signing in the Wild”, harvested
from YouTube videos, and adding challenging distractors such as
speaking and gesticulation videos. We compare our system with the
state-of-the-art in sign language detection and obtain a substantial
improvement in recognition (= 18%). Future work could involve
localising the signer(s) in the video frames, identifying specific sign
languages, and sign language constructs like fingerspelling.

7. SUPPLEMENTARY MATERIAL
https://github.com/mark-borg/sld-supp.pdf
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