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Sign Languages
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American Sign Language (ASL):  PERSON WHATEVER 
IX-they JUDGE IX1 REALLY WASTE, MINUTE [shook-
head] INSTEAD-OF MINUTE IX WHAT-conj LOVE 
ACCEPT WHO

English equivalent: For every minute we judge, we 
have squandered a minute we could have used to 
accept and love someone.

• Visual languages

• Multi-modal

• Concurrent modalities

• Articulators:
• Manual

• Hand motion
• Hand shapes
• Place of articulation

• Non-Manual
• Mouth patterns
• Facial Expressions
• Body posture

Source: HandSpeak



Sign Language technologies

3



• Yanovich (2016 LREC)
• Identification of major sign language 

constructs: fingerspellings, classifiers, …

• Hand-crafted visual features

• k-NN classifier

• Gebre et al. (2014 Comp. Ling.)
• Identification of particular sign languages: 

BSL, DSL, FBSL, FSL, GSL, NGT

• Sparse auto-encoder and 3D CNN
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Sign Language Detection – state of the art

• Monteiro et al. (2012 SIGACCESS)
• Face detection, background subtraction

• Hand-crafted visual features: velocity-based

• SVM

• Shipman et al. (2015 JCDL, 2017 SIGACCESS)
• Face detection, background subtraction

• Hand-crafted visual features: polar motion profiles

• SVM

• Gebre et al. (2013 ICIP)
• Face detection, skin detection

• hand-crafted visual features

• random forests



• No signing in generic video action recognition datasets, like AVA, THUMOS, …

• Previous work in SL detection
• Datasets not made publicly available

• Small size  (~200 videos)

• Sign Language Recognition (ASLR) datasets, RWTH-
Phoenix, SIGNUM, VGG BBC pose, …
• Trimmed

• Captured under constrained conditions
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Datasets – the need for sign language detection datasets

RWTH-Phoenix-2014 dataset
Src: Dreuw et al. (2010)
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“Signing in the Wild” dataset

• Untrimmed videos
• Each video can include multiple signing and non-signing events
• Harvested from YouTube

3 categories:  Signing Speaking Other

• 1120 video segments
• Each video segment:

• Up to 6.6 minutes 
(sampled at 5 Hz)

• Up to 2000 frames long
• 1.45 million frames in total

Groundtruthing:
• Frame-level
• 10-frame temporal 

context
• 1.23 million frames

Publicly available:
• IEEE DataPort
• https://github.com/mar

k-borg/Signing-in-the-
Wild-dataset
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“Signing in the Wild” dataset

Automated keyword-based search on YouTubeCandidate list of 38,000 video URLs

Random sampling of a subset of candidate videos

Manual vetting of candidate vidoes (inappropriate 
content, very low-res & poor quality videos filtered out)

List of vetted videos
Videos truncated to a length of 2000 frames 

(sampled @ 5 Hz)

Manual groundtruthing
of video frames

“Signing in the Wild” dataset

1120 video segments

Groundtruth data



Example frames 
from class 
signing
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Example frames 
from class 
speaking
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Example frames 
from class   
other

10



• Automated extraction of features using a Convolutional 
Neural Network (CNN)

• Combining both visual features and motion features

• Use of a Recurrent Neural Network (RNN) to handle the 
dynamic temporal patterns present in sign languages
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Sign Language Detection – proposed approach



• Two-stream approach (Simonyan, 2014)

12

Proposed architecture



•Motion stream:
• Performance vs. computational efficiency

• Investigated:
• Optical Flow
• Motion History Images (MHI)
• Multi-frame differencing
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Proposed approach



• CNN streams
• Pre-trained VGG-16 (Simonyan 2014)
• CNN features:

• A   7 x 7 x 512 = 25088 feature map from ‘block5_conv3’ layer
• B   4096 feature map from ‘fc1’ layer

• Motion stream CNN features:  
• We use transfer learning from a distant task (unrelated data)   vs.  Training from 

scratch  (Yosinski et al., 2014)

• No fine-tuning of VGG-16 layers
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CNN features



• Optical flow
• Dense optical flow (Farnebäck’s algorithm) 

• Encoded as RGB
• Flow vector magnitude → luminance channel 

• Flow vector angle → chrominance channels
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Motion data

t           t+1         t+2             …            t+10 224 x 224 x 30

Motion stream
CNN

Filter weights of 
first layer replicated



• Multi-frame differencing

• Motion History Images
• 5 frame temporal window
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Motion data

t           t+1         t+2             …            t+10 224 x 224 x 10

Motion stream
CNN

Filter weights of first layer 
averaged to 1-channel, then 

replicated 10 times

…



• Various RNN options: LSTMs and GRUs

• Stacked RNNs

• 2-layer GRU

• 256 hidden units

• 20 timesteps
• (2.5 seconds with 

a 5Hz sampling 
rate)
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RNN



• Stratified partitioning of the dataset

• video frames from a single video appear in only one partition

• 5 fold cross-validation

• Mini-batch stochastic gradient descent (SGD)

• Adam optimizer

• Training for 500 epochs, with early stopping (validation cross-entropy loss)

• Training strategy:
• Initial mini-batch size of 32, learning rate of 0.001
• Reduce learning rate when validation loss stops improving for the current combination of 

mini-batch size and learning rate
• Increase mini-batch size when no more change in validation loss is observed for the given 

mini-batch size despite the changes to the learning rate
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RNN training



• Evaluation of different feature maps from the CNN network
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Results

A

B



• Evaluation of the individual performance of the different streams, 
and when fusing both the motion and RGB streams together
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Results



• Evaluation of different RNN architectures
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Results



• Ablation studies on the proposed RNN network

22

Results



• Comparison with the state-of-the-art in sign language detection
• ≈ 18% improvement over baseline

• ≈ 9% improvement when using an RNN versus SVM

Shipman et al. (JCDL 2015, ACM SigAccess 2017) 
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Results
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• Confusion matrix
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Results
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Results

Video “YeTuAxh0LZo”

Sample video frames 
(every 100)

Groundtruth + prediction 
strips (signing, speaking, 
other)
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Results

Video “VgiM1CFgpbA”
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Results

Video “VehhDKHe5Ko”

Second part of this video contains 
hand motion, clapping and singing
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Results

Video “Vbm3MprH3KQ”

Two signers around a table. Several segments 
mislabeled as speech
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Results

Video “UEfP1OKKz_Q”

Note the boundary errors between 
speech and other categories
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Results

Video “TWKpeFpbC0w”
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Results

Video “wSA84cXmvCA”

A failure case
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Results

Video “sWxjJaRj1EE”

Correct detection. Signer is wearing a mask
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Results

Video “HUMEcnkvhJU”

Same person first speaks, then starts 
signing
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Results

Video “wCFoJviRw9k”

Video contains a person doing both 
signing and speaking 



• A new dataset “Signing in the Wild”

• Successful sign language detection via a two-stream CNN+RNN 
• ≈ 18% improvement over state-of-the-art

• Visual + Motion features are both important for signing

• Future Work:

• Signer localisation

• Identification of particular sign languages & sign language constructs

• Investigating what the CNN+RNN is basing recognition on 
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Conclusion & Future Work



• Thank you for your attention
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